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Summary 

Have you seen the picture on the cover of this master's thesis? That is the object of desire 

in this thesis and will not be studied until Chapter 4. It is a spinless fermionic 

alternating ladder with nearest neighbor interaction in a Charge Density Wave (CDW) 

phase. Say what? Don't worry, you will understand it after reading Chapter 1. 

Spoiler alert! In this work, three quantum systems have been studied using the many-

particle system solver Density Matrix Renormalization Group (DMRG) algorithm:  

1. A one-dimensional spinless fermionic chain - 1DSF chain. 

2. Two interacting 1DSF chains - 2-leg ladder. 

3. A ladder that an engineer would probably never be able to build - 1221 ladder.  

The main focus of this work is to determine the phase transition to the CDW phase in 

an infinite system, using the observables of a finite system. For the 1DSF chain and 2-leg 

ladder, one can compare the numerically determined phase transition with the exact phase 

transition predicted by theory. If the two do not match, then one can discard the method 

or observable used to determine the exact phase transition. In this way, good methods 

and observables were found to predict a phase transition in a 1DSF chain with an 

accuracy below 3%! 

During the process, a method was discovered that could assist in the search for phase 

transitions in a wide variety of systems - the Phase Independent Fit method (explained 

in Chapter 1.7.4). It not only provides an accurate prediction for the critical value in the 

1DSF chain, but can in principle be applied to different systems and their 

observables. This is demonstrated in this work. Using this (and other methods), it was 

possible to determine the theoretically unknown transition to the CDW phase of the 

1221 ladder. However, not everything is as bright as it seems. Some unsolved problems 

emerged, which could be interesting for theorists, computational physicists and of course 

for other students. 
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List of Abbreviations and 
Acronyms 

          CCS Charge Conjugation Symmetry 

         CDW Charge Density Wave. 

         1DSF One-Dimensional Spinless Fermions. 

        DMRG Density Matrix Renormalization Group. 

𝐸p Single-particle gap. 

𝛥𝐸 Excitation gap (difference between two lowest energy eigenvalues). 

𝐹(𝑥) Density-density correlation function. 

𝐾 Luttinger-liquid parameter. 

𝑆 (Von Neumann) bipartite entanglement entropy. 

𝑐 Central charge. 

𝛿 (CDW) order parameter. 

𝜎2 Density fluctuation. 

𝐿 
Length of the chain or ladder. In the case of a 1DSF chain or 1221-

ladder 𝐿 is the number of sites. 

𝑉cdw 

Exact critical value for Coulomb interaction indicating the phase 

transition to the CDW phase: 𝑉cdw = 2 (1DSF) and 𝑉cdw = 0 (2-

leg). 

𝑉c 
Critical value of the Coulomb interaction determined with DMRG, 

suggesting a phase transition. 
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𝑉err The most dominant error in the determination of 𝑉c. 

      𝑉, 𝑉x, 𝑉y 
Coulomb interaction strength between nearest-neighbor fermions 

in 𝑥 or 𝑦 direction. In this work: 𝑉: = 𝑉x = 𝑉y. 

        𝑡, 𝑡x, 𝑡y 
Hopping amplitudes between nearest-neighbor sites in 𝑥 and 𝑦 

direction. In this work: 𝑡 ≔ 𝑡x = 𝑡y = 1. 

𝑐𝑥 Annihilation operator for site 𝑥. 

𝑐𝑥
†
 Creation operator for site 𝑥. 

𝑂 An arbitrary observable. Do not confuse with the Lanau symbol 𝒪. 
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1. INTRODUCTION 

1.1. ONE-DIMENSIONAL INTERACTING 

SYSTEMS 

From a theoretical perspective, one-dimensional interacting systems are a fascinating 

area of study as the Fermi liquid theory fails to capture their behavior1. These systems 

require a new approach utilizing a different one-dimensional field theory, such as the 

Luttinger Liquid theory for metals, making them theoretically exceptional. In this work, 

one-dimensional finite spinless fermionic systems are studied and an attempt is made 

to make predictions about these systems in the thermodynamic limit. Some systems, such 

as a one-dimensional spinless fermionic chain (1DSF) can be solved exactly in the 

thermodynamic limit using the Bethe ansatz.1,2  This allows for a comparison of exact 

results with numerical ones, as done in this work. In this way, not only the theory can be 

tested, but also the usefulness of the numerical algorithms to solve such theories. 

Not only are these systems fascinating theoretically, but quasi-1d systems are also 

intriguing from an experimental standpoint. These systems occur in nature in the form of 

quantum chains, nanotubes, and edge states in the quantum Hall effect. Furthermore, 

quantum chains have the potential to revolutionize technology miniaturization. To 

harness this potential, it is essential to understand the transport mechanisms in quantum 

chains, as well as the interactions between chains and between fermions within a single 

chain. 

In this work, the last two problems are investigated - the interaction between (spinless) 

fermions within a 1DSF chain, the interaction of two 1DSF chains (2-leg ladder), and 
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interaction of fermions inside an alternating 1221-ladder (as shown on the cover of this 

thesis). These one-dimensional interacting systems are the most elementary systems that 

contain complex phenomena such as the Luttinger Liquid (LL) phase, Charge Density 

Wave (CDW) phase, and phase separation1. Despite their apparent simplicity, simulating 

spinless fermionic systems poses challenges. One of these challenges, which this work 

addresses, is the precise identification of phase transitions. As an example, the phase 

transition between the LL phase and CDW phase in the thermodynamic limit of a 1D 

spinless fermionic chain, which is well-known in theory, is difficult to pinpoint using 

numerical methods due to an essential singularity.3 Such singularities at phase 

transitions make 1d systems a captivating subject of research. In fact, current studies are 

being conducted on various 1d systems and their modifications such as 2-leg ladders, 

alternating ladders, and wires on a substrate, to name a few3–6. Despite the essential 

singularity in the 1DSF chain, there are several methods to determine the critical point 

from the numerical data for a finite chain. These methods are presented in Chapter 1.6.  

However, the 1D spinless fermionic chain (but also the 2-leg ladder) serves only as a toy 

model in this work, with which different methods for extracting critical points are tested 

and compared against exact results. It becomes much more interesting when investigating 

the 1221 ladder, because here the phase transitions are theoretically unknown. 

Therefore, the best methods that worked for the 1DSF chain and 2-leg ladder are applied 

to the 1221 ladder to detect phase transitions. 

1.2. DMRG: ALGORITHM TO SOLVE THE 

MANY PARTICLES HAMILTONIAN 

In this work, spinless fermionic systems are studied whose number of lattice sites is so 

large that the ground state of the system cannot be calculated exactly by any supercomputer 

in the world. This is because the dimension of the Hilbert space in which the ground state 

of the system lives grows exponentially with the system size. This exponential growth of 

the dimension also leads to the exponential growth of the required memory and CPU 

time7. Already the exact description of a system with twenty sites needs a Hilbert space 

with a dimension over one million. An exact computation of the ground state of larger 

systems is practically impossible, but also not necessary, because - at least in the case of 

one-dimensional systems - an approximation of the ground state by using of a suitable 

algorithm already provides a good overlap with the exact ground state7. 
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In this work, the exact ground state is approximated using the Density Matrix 

Renormalization Group (DMRG) algorithm. In the following, its principle is explained 

using a one-dimensional chain. 

The used DMRG algorithm consists of two parts: infinite DMRG and finite DMRG. 

With the infinite DMRG, a chain is built recursively up to a desired length 𝐿 and the 

dimension of the Hilbert space is truncated to a fixed maximal value 𝑚2 to avoid the 

exponential growth. With the finite DMRG, which is executed after the infinite DMRG, 

the accuracy of the ground state is improved at fixed length.8 

Basic objects for DMRG are9:  

• Lattice site 

• Left block 𝐵𝐿(𝑙, 𝑚) and right block 𝐵R(𝑙, 𝑚) 

• Superblock 𝐵S(𝐿′, 𝑚2) with 𝐿′ as the number of sites. 

A lattice site is described by two possible states: State |1⟩ describes a state occupied by a 

spinless fermion and |0⟩ an unoccupied state. The left block 𝐵L(𝑙, 𝑚) represents a part of 

the chain with site 1, … , 𝑙 and the associated Hilbert space ℋL(𝑙, 𝑚) is spanned by 𝑚 

basis vectors |𝑏1⟩, … , |𝑏𝑚⟩. It is analogous for the right block: 𝐵R(𝑙, 𝑚). For the exact 

description of the block with spinless fermions, 𝑚 = 2𝑙 basis vectors are required. The 

superblock 𝐵S(𝐿′, 𝑚2) consists of the left and right block and represents the whole chain 

of length 𝐿′. 

1.2.1. Infinite DMRG 

The infinite DMRG starts with a left block 𝐵L(𝑙, 𝑚) and an equally sized right block 

𝐵R(𝑙, 𝑚), each describing half of the superblock 𝐵S(𝐿′, 𝑚2), which has length 𝐿′ = 2𝑙 and 

dimension 𝑚2 and whose ground state can be calculated exactly. The two blocks are each 

increased by one lattice site in the next step: 𝐵L(𝑙 + 1, 2𝑚) and 𝐵R(𝑙 + 1, 2𝑚) (these new 

Figure 1.1: Basic principle of infinite DMRG. 
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blocks are called enlarged blocks). As a result, the dimension of the Hilbert space of the 

blocks is doubled. Adding one more site quadruples the original dimension 𝑚, so the 

dimension of the blocks grows exponentially with each additional site. After increasing 

the block size by one, infinite DMRG truncates the dimension back to the value 𝑚 (see 

Figure 1.1). 

How does the truncation process work? First, the new superblock Hamiltonian 𝐻S(2𝑙 +

2, 4𝑚2) has now two more sites as well as quadrupled dimension and is exactly 

diagonalized using Davidson's algorithm to obtain the ground state |𝐸0⟩ of the system. 

The ground state is given by the tensor product of the basis vectors |𝑏𝑖⟩ and |𝑏𝑗⟩ of the 

left and right block8: 

|𝐸0⟩  = ∑ ∑ 𝑎𝑖𝑗|𝑏𝑖⟩ ⊗ |𝑏𝑗⟩

2𝑚

𝑗=1

2𝑚

𝑖=1

 (1.1) 

From the ground state, the reduced density matrix 𝜌L of the left block (L stands for 

left) is calculated  

(𝜌𝑖𝑘)L  = ∑ 𝑎𝑖𝑗𝑎𝑘𝑗
∗

2𝑚

𝑗=1

 (1.2) 

and exactly diagonalized to obtain their eigenstates {|𝑤𝛼⟩, 𝛼 = 1, … , 2𝑚} and 

eigenvalues {𝑤𝛼}.8 The eigenstates now serve as a new basis with which the Hamiltonian 

𝐻L(𝑙 + 1, 2𝑚) of the left block is represented. 

Next, all states |𝑤𝛼⟩ with the smallest probability 𝑤𝛼 are removed from the new basis and 

only 𝑚 states are kept in the basis. Omitting less probable states results in an error that 

indicates how severe the deviation of the effective ground state |𝐸0⟩ will be from the exact 

ground state |𝐸0,exact⟩. This error is called discarded weight 𝜀 and is calculated as 

follows: 

𝜀 = 1 − ∑ 𝑤𝛼

𝑚

𝛼=1

 (1.3) 

The kept 𝑚 basis states form the rows of an 𝑚 × 2𝑚 operator 𝑃. With this operator the 

left block Hamiltonian 𝐻L(𝑙 + 1, 2𝑚) is represented in the new effective basis: 

𝐻L(𝑙 + 1, 𝑚) = 𝑃𝐻L(𝑙 + 1, 2𝑚)𝑃† 
 (1.4) 
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The effective Hamiltonian 𝐻L(𝑙 + 1, 𝑚) obtained by the transformation (1.4) is now 

described by a smaller 𝑚 × 𝑚 matrix instead of a 2𝑚 × 2𝑚 matrix. Similarly, the right 

block and all other operators are transformed into the simplified basis. This 

transformation of the operators into the eigenbasis of the reduced density matrix of 

the left block represents the truncation process. 

The two effective Hamiltonians 𝐻L(𝑙 + 1, 𝑚) and 𝐻R(𝑙 + 1, 𝑚) are used to construct the 

effective superblock Hamiltonian9 𝐻S(2𝑙 + 2, 𝑚2), which now describes a chain with 

two more lattice sites, but has only 𝑚2 × 𝑚2 matrix entries (rather than 4𝑚2 × 4𝑚2). 

Then the left 𝐵L(𝑙 + 1, 𝑚) and right block 𝐵R(𝑙 + 1, 𝑚) are again each extended by one 

site, which doubles the dimension of each block: 𝐵L(𝑙 + 2, 2𝑚) and 𝐵R(𝑙 + 2, 2𝑚). Then 

the truncation process is applied again to undo this doubling: 𝐵L(𝑙 + 2, 𝑚) and 𝐵R(𝑙 +

2, 𝑚). Adding sites and truncating the Hilbert space is performed until a superblock of 

desired length 𝐿 and dimension (4𝑚)2 is constructed. 

Once the infinite DMRG has built up a chain length 𝐿, the approximated ground state 

|𝐸0⟩ of the chain and its approximated ground state energy 𝐸0 can be obtained by 

diagonalizing the final superblock Hamiltonian. In this ground state, the mean value of 

a (local) observable ⟨𝑂̂𝑖⟩ acting on the 𝑖-th site can then be calculated: 

⟨𝑂̂𝑖⟩ = ⟨𝐸0|𝑂̂𝑖|𝐸0⟩ = ∑ 𝑤𝛼⟨𝑤𝛼|𝑂̂𝑖|𝑤𝛼⟩ 

𝑚

𝛼=1

 (1.5) 

For more on the measurement of local and non-local observables (such as correlation 

functions), see the paper by A.L. Malvezzi9. 

1.2.2. Finite DMRG 

The infinite DMRG always divided the superblock into two blocks of equal length. All 

bipartitions of non-equal block length, for example 𝐵L(𝐿/3, 𝑚) and 𝐵R(2𝐿/3, 𝑚), were 

ignored. The finite DMRG is used to iterate through different bipartitions of the chain 

so that the ground state energy (and any other observable) of a finite-length chain is made 

as precise as possible (for fixed 𝑚)8. 

Once the desired chain length 𝐿 has been obtained using infinite DMRG, it will not be 

changed during finite DMRG. 
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Here is a brief explanation of how finite DMRG works (see Figure 1.2): The finite DMRG 

starts with an effective superblock 𝐵S(𝐿, 𝑚2) of a fixed length 𝐿. 

1) In the first step the superblock is divided into left 𝐵L(𝑙, 𝑚) and right block 𝐵R(𝐿 −

𝑙 − 2, 𝑚). Also, two sites are needed for the next step. 

2) In the next step, the two single sites are integrated tensorially into left and right 

block, respectively. In this way the dimension of the blocks is doubled and they 

become larger by one site each: 𝐵L(𝑙 + 1, 2𝑚) and 𝐵R(𝐿 − 𝑙 − 1, 2𝑚). Then the 

two blocks are combined to form a superblock 𝐵S(𝐿, 4𝑚2), whose Hamiltonian 

𝐻S(𝐿, 4𝑚2) is diagonalized using Davidson's algorithm, and the ground state of 

the superblock is obtained. 

3) The two enlarged blocks 𝐵L(𝑙 + 1, 2𝑚) and 𝐵R(𝐿 − 𝑙 − 1, 2𝑚) are again 

truncated to dimension 𝑚, in the same way as in infinite DMRG. 

These three steps are repeated for a subsequent left sweep. Here, in the first step, the left 

block is decreased by one site: 𝐵L(𝑙 − 1, 𝑚) and the right block is increased by one site: 𝐵R(𝐿 −

𝑙 − 1, 𝑚). After that, steps #2 and #3 follow analogously. The left sweep is performed 

until the left block consists of only one site: 𝐵L(1, 2) and the right block consists of all 

except one site: 𝐵R(𝐿 − 1, 𝑚). 

During the right sweep, on the other hand, in the first step the right block is decreased by 

one site: 𝐵R(𝐿 − 𝑙 − 3, 𝑚) and the left block is increased by one site: 𝐵L(𝑙 + 1, 𝑚). Otherwise, 

Figure 1.2: Basic principle of finite DMRG. 
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the algorithm runs analogously to the left sweep until the right block consists of only one 

site: 𝐵R(1, 1) and the left block consists of all except one site: 𝐵L(𝐿 − 1, 𝑚). 

After the left and right sweeps are done, finite DMRG has done a sweep. The more 

sweeps performed, the more accurate the ground state and all measured observables. How 

many sweeps are needed for the convergence of the ground state depends on the model 

considered and on the chosen number 𝑚 of basis states9. 

How can the algorithm be applied to two-dimensional structures, such as a 2-leg ladder or 

an alternating ladder? For this purpose, a DMRG path is defined along the lattice in a 

certain way and the model is converted into a one-dimensional chain: 

1.3. 1DSF CHAIN: HOW TO DESCRIBE 1D 

QUANTUM SYSTEM? 

The following tight-binding Hamiltonian describes a one-dimensional many-particle 

system with 𝐿 sites and spinless fermions: 

𝐻TB = −𝑡 ∑(𝑐𝑖
†𝑐𝑗 + H.c.)

⟨𝑖𝑗⟩

 (1.6) 

Here 𝑐𝑖
†
 creates a spinless fermion at site 𝑖 of the chain and 𝑐𝑖 annihilates a fermion at the 

same site. Since fermions have no spin degree of freedom, a lattice site can be occupied 

by only one fermion according to the Pauli principle. 

Abbreviation H.c. stands for Hermitian conjuagate of 𝑐𝑖
†𝑐𝑗 and the notation ⟨𝑖𝑗⟩ restricts 

the summation to adjacent lattice sites 𝑖 and 𝑗.  The hopping parameter 𝑡 ≥ 0 describes 

the hopping of a fermion from site 𝑖 to the neighboring site 𝑗 and vice versa. In all 

calculations 𝑡 is set to one. 

The Hamiltonian (1.6) describes a noninteracting chain for which the ground-state energy 

𝐸0 is known for any length 𝐿: 

Figure 1.3: DMRG path for two different lattice structures. Left: 2-leg ladder. Right: Alternating 1221-
ladder. 
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𝐸0(𝑁, 𝐿, 𝑉 = 0) = −2𝑡 ∑ cos (
𝜋𝑛

𝐿 + 1
)

𝑁

𝑛=1

 (1.7) 

Here 𝑁 is the number of fermions in the chain. The formula (1.7) is used later to 

compare with the numerically calculated ground state energy to check the correctness of 

the implementation of the DMRG program. 

The Hamiltonian (1.6) becomes much more interesting if, in addition to the hopping term, 

an interaction term for neighboring sites is added: 

𝐻 = −𝑡 ∑(𝑐𝑖
†𝑐𝑗 + H.c.)

⟨𝑖𝑗⟩

+  𝑉 ∑ 𝑐𝑖
†𝑐𝑖𝑐𝑗

†𝑐𝑗

⟨𝑖𝑗⟩

 (1.8) 

The Hamiltonian (1.8) is called the spinless fermion model. The additional term in the 

Hamiltonian accounts for the repulsion of the neighboring fermions. The repulsive 

interaction parameter 𝑉 ≥ 0 describes the strength of the repulsive Coulomb 

interaction between two neighboring fermions at the site 𝑖 and 𝑗. 

There is an exact analytical solution for the 1DSF model, which is given by the Bethe 

ansatz1,2. The model is solved exactly for all 𝐿 and therefore also in the thermodynamic 

limit (𝐿 → ∞). The difficulty is to infer these results for an infinite chain from the 

numerical results for a finite chain. 

In this work, only the case is considered where the system is half filled with fermions. 

Thus, a chain with even number of sites 𝐿 is always filled with 𝑁 = 𝐿/2 fermions and a 

ladder with 2𝐿 sites is always filled with 𝑁 = 𝐿 fermions. Since odd 1DSF chains are also 

considered in this work, the number of fermions is rounded off in this case. 

1.3.1. Quantum phase transition in 1D quantum systems 

The model (1.7) or (1.8) has two parts that compete with each other. The hopping of the 

fermions from site to site is now made more difficult by the mutual repulsion. This leads 

to another phase which can occur in the 1DSF model. 

Figure 1.4: One-dimensional spinless 

fermion chain of length 𝐿 with 
nearest neighbor repulsion and 
hopping. 
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Depending on the choice of the interaction parameter 𝑉, the ground state of (1.9) in 

thermodynamic limit (𝐿 → ∞) is in one of the two phases: 

1. Luttinger Liquid (LL) phase – this metallic quantum phase occurs when the 

interaction parameter 𝑉 is smaller than or equal two.1 In this phase, the density 

distribution of the fermions is uniform: ⟨𝑐𝑥
†𝑐𝑥⟩ =

1

2
. 

2. Charge Density Wave (CDW) phase – 

this insulating quantum phase occurs 

when the Coulomb parameter 𝑉 is 

greater than two1. In this phase, the 

repulsion of the fermions is so strong 

that they take the largest possible 

distance to each other. In the limit 𝑉 ≫ 2 the fermions occupy every second 

site and the density distribution oscillates with site 𝑥: ⟨𝑐𝑥
†𝑐𝑥⟩ =

1

2
+ (−1)𝑥𝛿. 

Here 𝛿 is the CDW order parameter and its magnitude |𝛿| takes the values in 

the interval [0,
1

2
]. The order parameter approaches |𝛿| → 0.5 for 𝑉 → ∞. The 

order parameter is discussed in more detail in Chapter 1.6.6. 

Thus, there is a quantum phase transition at 𝑉cdw = 2 between the LL phase the CDW 

phase. One of the goals of this thesis is to investigate how this phase transition changes 

when we add another chain that interacts with the first one (2-leg ladder) and then what 

happens when the ladder is distorted (alternating 1221-ladder). 

1.3.2. Particle-hole symmetry and open boundary conditions 

In addition to the Hamiltonian (1.8), the following Hamiltonian, which has particle-hole 

symmetry, is also investigated1: 

𝐻′ = −𝑡 ∑(𝑐𝑖
†𝑐𝑗  +  H.c.)

⟨𝑖𝑗⟩

 +  𝑉 ∑ (𝑛𝑖  −  
1

2
) (𝑛𝑗  − 

1

2
)

⟨𝑖𝑗⟩

 (1.9) 

The two Hamiltonians (1.8) and (1.9) are equivalent for periodic boundary conditions up 

to a constant. For open boundary conditions, on the other hand, the two Hamiltonians 

differ not only by a constant, but also by the following boundary term (in the one-

dimensional case): 

ΔCCS =
𝑉

2
(𝑛1  +  𝑛L) (1.10) 

Figure 1.5: Two possible fermion 
arrangements that make the chain an 

insulator. The ground state |𝐸0⟩ is 

degenerate in this CDW phase: 𝐸0 = 𝐸1. 
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The ground state calculated with DMRG converges better when open boundary 

conditions are used10. This is the reason why open boundary conditions are used in this 

work. In the following: 

• A system is with CCS, if the particle-hole symmetric Hamiltonian (1.9) = (1.8) + 

(1.10) is used. Here CCS stands for Charge Conjugation Symmetry. 

• A system is without CCS if the Hamiltonian (1.8) is used.  

This boundary term ΔCCS will yield a different result for calculated observables depending 

on the parity of the chain. For an odd chain length, the two degenerate ground states |𝐸0⟩ 

and |𝐸1⟩, for example for 𝑉 ≫ 2, have a different number of particles: 𝑁0 = (𝐿 + 1)/2 

and 𝑁1 = 𝑁0 − 1 so that one ground state occupies the chain with two edge fermions 

and the other ground state does not (see Figure 1.6). 

1.4. 2-LEG-LADDER: TWO INTERACTING 

1DSF CHAINS 

After examining a single chain, another chain 

is brought into interaction with the first chain. 

Two such coupled chains, as shown in Figure 

1.7, form a 2-leg ladder11. 

In this work, the hopping parameter along the 

chain 𝑡x is equal to that between the chains: 𝑡x = 𝑡y = 1. Also, the repulsion between two 

neighboring fermions on one chain or on different chains is equal: 𝑉x = 𝑉y. The 2-leg ladder 

is described by the generally written Hamiltonians (1.8) and (1.9). 

The ground state energy 𝐸0(𝐿, 𝑁) of a non-interacting ladder (𝑉 = 0) of length 𝐿 and with 

𝑁 fermions is the sum of the lowest single-particle energies 𝜀0: 

𝜀0(𝑛y, 𝑛x) = (−1)𝑛y + 2 cos (
𝜋𝑛x

𝐿 + 1
) (1.11) 

Figure 1.7: Homogeneous 2-leg ladder with 𝑡x =
𝑡y = 1 and 𝑉x = 𝑉y. 

Figure 1.6: Different number 
of particles cancels the 
degeneracy of the ground state 
of an odd chain. 
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Here is 𝑛y ∈ {0,1} and 𝑛x ∈ {1, … , 𝑁}. The exact ground state energy 𝐸0(𝐿, 𝑁) is used in 

Chapter 3 to be compared with the numerical ground state energy for 𝑉 = 0. 

The phase transition to the CDW phase for an infinite ladder already happens at 𝑉cdw =

0.1 Like the CDW phase of the 1DSF chain, the CDW phase of the 2-leg ladder is 

twofold degenerate. The two degenerate CDW ground states |𝐸0⟩ and |𝐸1⟩ for 𝑉 ≫ 0 

are shown in Figure 1.8. Again, as with a chain, there is a difficulty of deducing the 

behavior of an infinite ladder from the results of a finite ladder. 

1.5. ALTERNATING LADDER: DISTORTION 

OF A 2-LEG-LADDER 

Next, lattice sites are removed as shown in 

Figure 1.9. The resulting structure is an 

alternating ladder, such as a 1221 ladder in 

this case. 

In order for DMRG to be applied to the 

1221 ladder, it is "flattened" into a chain. This is accomplished by choosing an arbitrary 

DMRG path along the 1221 ladder, which then represents a chain, as shown in Figure 

1.3. Here, the Hamiltonians (1.8) and (1.9) contain hopping and interaction terms between 

the 𝑛-th and (𝑛 + 3)-th lattice sites. To provide the 1221 ladder with CCS, the potential 

−𝑉/2 is added to the fermions on sites 𝑛 and 𝑛 + 3 and the potential 𝑉/2 is added to 

the ends 𝑛 = 1 and 𝑛 = 𝐿 of the chain. The number 𝐿 of sites must be a multiple of six 

for a 1221 ladder to maintain the 1221 structure: 𝐿 = 6𝑚 with 𝑚 ∈ ℕ. 

For such an alternating ladder with interacting spinless fermions no exact phase 

transitions are known and it has not been investigated as far as I could research. 

Alternating ladders with similar structure and with spin have been studied by K. Essalah et 

al.12  

Figure 1.9: A 1221 ladder with alternating number of 
sites per rung. 

Figure 1.8: An infinite 2-leg ladder 
has a twofold degenerate ground 
state in the CDW phase. Shown is 
the arrangement of fermions for 

large 𝑉. 
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1.6. THE INVESTIGATED OBSERVABLES 

This chapter briefly introduces the studied observables, the theoretical expectations for 

an infinite chain, how they are calculated, and their physical interpretation. 

The observables of the 1DSF chain are studied with an even and odd number of sites 𝐿. 

For a two-leg ladder and a 1221-ladder, only an even number of lattice sites can be 

considered. All three models are also simulated with and without CCS. 

1.6.1. Entanglement entropy 

The first observable to be studied is the von Neumann entropy 𝑆. It is defined as follows 

for a bipartite system divided into two blocks 𝐵L and 𝐵R, which in this work are of equal 

length8: 

𝑆 =  −Tr[𝜌L ln(𝜌L)]  =  − ∑ 𝑤𝛼ln(𝑤𝛼) 

𝑚

𝛼 = 1

 (1.12) 

Here, 𝑤𝑖 are the eigenvalues of the reduced density matrix 𝜌L of the ground state of 

the subsystem 𝐵L of the chain. The entropy 𝑆 describes how entangled the blocks 𝐵L and 

𝐵R are with each other. 𝑆 = 0 means that the blocks are not entangled at all. The entropy 

and thus the entanglement is maximal: 𝑆 = ln(𝑚) if all eigenvalues 𝑤𝛼 are equal. 

For a 1DSF chain, the entropy 𝑆(𝐿) is theoretically expected to behave logarithmically as 

a function of length 𝐿, for interaction potential 𝑉 ≤ 2 (as long as the entropy does not 

exhibit Friedel oscillations)13: 

𝑆(𝐿) =
𝑐

3
ln (

𝐿

𝜋
) + 𝑎 (1.13) 

Here, 𝑎 and 𝑐 are two constants that depend on the model under consideration. The 

constant 𝑐 is special here, which is why it will be treated in a more detail in the next 

chapter. Eq. (1.13) also reveals how 𝑆(𝑉) as a function of 𝑉 will behave for 𝑉 ≤ 2 in the 

limit 𝐿 → ∞: 𝑆(𝑉 ≤ 2) will diverge! 

1.6.2. Central charge 

The constant 𝑐, which appears in the formula (1.13) for entropy, is called central charge 

and it classifies different models which are conformally invariant according to the 

Conformal Field Theory (CFT)8,14. 
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In the thermodynamic limit of the 1DSF model, the function 𝑐(𝑉) shows a discontinuity at 

the critical point 𝑉 = 2.4 This discontinuity separates the metallic from the CDW phase: 

•  In the metallic phase 𝑐(𝑉 ≤ 2) = 1. 

•  In the CDW phase 𝑐(𝑉 > 2) = 0. 

There are two ways to determine the central charge numerically: By fitting the entropy 

with Eq. (1.13) or by looking at the difference of Eq. (1.13) for two different chain lengths 

𝐿 and 𝐿′: 

𝑐(𝐿, 𝐿′)  =  6 ⋅
𝑆(𝐿)  −  𝑆(𝐿′)

ln(𝐿)  −  ln(𝐿′)
 (1.14) 

Eq. (1.14) can also be applied to the 2-leg ladder and 1221-ladder as long as the entropy 

exhibits logarithmic behavior (1.13). 

1.6.3. Ground state energy 

The ground state energy 𝐸0 is the smallest 

eigenvalue of the considered Hamiltonian (1.8) or 

(1.9). In the CDW phase, the ground state of the 

infinite 1DSF chain is twofold degenerate: |𝐸0⟩ =

|1010… ⟩ and |𝐸1⟩ = |0101… ⟩ with 𝐸0 = 𝐸1. 

The ground state energy gives another possibility to choose a good value for 𝑚, at least 

for 𝑉 = 0. For this purpose, the deviation |𝐸0(𝑚) − 𝐸0,exact| of the exact energy 

𝐸0,exact, calculated with (1.7), from the numerically calculated value 𝐸0(𝑚) as a 

function of 1/𝑚 is plotted. The value of 𝑚 is chosen that gives a desired accuracy of the 

observable. This method is used in Figure 1.11 for different number of sweeps for a chain 

length 𝐿 = 500.  

The deviation does not change when the number of sweeps is increased starting from 4. 

The accuracy of the determination of the critical value 𝑉cdw = 2 of the 1DSF model in 

this work is limited to 10−3. Therefore, the dimension 𝑚 = 100 is chosen, which gives 

a deviation |𝐸0(𝑚) − 𝐸0,exact| ≈ 10−4 (convergence error). This value is a good balance 

between the computation time and the accuracy of the calculations. 

Figure 1.10: Two possible states of the 
infinite 1DSF chain leading to the twofold 
degeneracy of the ground state energy. 
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1.6.4. Excitation gap 

The excitation gap 𝛥𝐸 in this work is the difference between the smallest two energy 

eigenvalues 𝐸1 and 𝐸0 of the Hamiltonian (1.8) or (1.9): 

𝛥𝐸 = 𝐸1 − 𝐸0 (1.15) 

In the LL phase (𝑉 ≤ 2), the 1DSF chain is expected to behave like a metal and the energy 

gap 𝛥𝐸 in the thermodynamic limit vanishes. But also in the CDW phase (𝑉 > 2), the 

difference 𝛥𝐸 should be zero in the thermodynamic limit, since the ground state is twofold 

degenerate. For a finite chain, as can be seen in Chapter 2.3, the excitation gap is not zero 

everywhere!  

1.6.5. Single-particle gap 

Single-particle gap 𝐸p describes the energy required to excite a single particle from the 

highest level below the Fermi level to the lowest level above the Fermi level3. 

𝐸p = 𝐸0(𝑁 + 1) + 𝐸0(𝑁 − 1) − 2𝐸0(𝑁) 
(1.16) 
 

Here, 𝐸0(𝑁 + 1) is the ground state energy of the half-filled chain with one additional 

fermion and 𝐸0(𝑁 − 1) is the ground state energy with one less fermion. Unlike the 

excitation gap 𝛥𝐸, the single-particle gap 𝐸p bypasses degeneracy and provides the actual 

difference in energy between the ground state and first excited state in the CDW phase. 

In the thermodynamic limit of a half-filled chain, the theory for the 1DSF model predicts 

the following behavior for the 𝐸p(𝑉) curve1,3: 

• In the metallic phase 𝑉 ≤ 2 the gap vanishes. 

Figure 1.11: Deviation of 
the ground state energy 

𝐸0(𝑚) from the exact 

value 𝐸0,exact as a 

function of m for a non-

interacting chain (𝑉 =
0) of length 𝐿 = 500 for 
4, 6 and 8 sweeps. 
Sweeps do not alter the 
curve. 
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• Above the phase transition 𝑉 = 2, the gap opens exponentially. 

• In the CDW phase for 𝑉 ≫ 2 the gap 𝐸p approaches 𝑉. 

1.6.6. CDW order parameter 

The CDW order parameter 𝛿 is the alternating sum of the ground state particle densities 

and measures how well a CDW has formed. The CDW order parameter is defined as 

follows 4: 

𝛿 =  
1

𝐿
∑ (−1)𝑥〈𝑐𝑥

†𝑐𝑥〉

𝐿

𝑥 = 1

 (1.17) 

CDW order parameter lies in the range 0 ≤ |𝛿| ≤ 0.5 and the summation goes over all 

lattice sites. In the thermodynamic limit of a half-filled chain, the exact 𝛿(𝑉) curve for 

the 1DSF model behaves as follows.3: 

• In the metallic phase 𝑉 ≤ 2 the CDW order parameter vanishes. 

• In the CDW phase for 𝑉 > 2 the magnitude |𝛿| increases monotonically with 𝑉 

and saturates towards the value |𝛿| → 0.5 for 𝑉 → ∞. The convergence of the 

order parameter |𝛿(𝑉)| for 𝑉 > 4 can be approximated by the following 2nd 

degree polynomial (the accuracy can be improved if higher order polynomials 

𝒪(𝑉−4) are included)3: 

𝛿 (
1

𝑉
) = 𝐴 + 𝐵 (

1

𝑉
)
2

+ 𝒪(𝑉−4)  (1.18) 

Here 𝐴 = 0.5 and 𝐵 = −2 are coefficients given by the theory for an infinite 1DSF chain. 

They are used as fit parameters in this work. 

1.6.7. Density fluctuation 

The density fluctuation 𝜎2 describes the average deviation of all ground state particle 

densities 〈𝑐𝑥
†𝑐𝑥〉 = 𝑛𝑥 from the mean value 𝑁 𝐿⁄ = 1 2⁄ . 

𝜎2  =  
1

𝐿
∑ (〈𝑐𝑥

†𝑐𝑥〉  −  
1

2
)
2𝐿

𝑥 = 1

 (1.19) 

Because of the constant particle density 𝑛𝑥 = 1/2 in the LL phase of an infinite chain, 𝜎 

vanishes for 𝑉 ≤ 2. In the CDW phase, on the other hand, the particle density oscillates 

from lattice site to lattice site according to Eq. (1.17) and the density fluctuation has a 

finite value, becoming at most 1/4. 
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1.6.8. Correlation function and LL parameter 

Density-density correlation functions 𝐹(𝑥 − 𝑥0) (also called charge correlation 

function) for a chain is defined as:4 

𝐹(𝑥 − 𝑥0) = 〈𝑛𝑥0
𝑛𝑥〉 − 〈𝑛𝑥0

〉〈𝑛𝑥〉 (1.20) 

The expectation values are calculated in the ground state |𝐸0⟩ of the chain. As the name 

implies, 𝐹(𝑥 − 𝑥0) describes how the site 𝑥0 correlates with another site 𝑥 located at 

distance 𝑥 − 𝑥0. The fixed point 𝑥0 is placed in the middle 𝑥0 = 𝐿/2 of the 1DSF chain 

or at the edge 𝑥0 = 1. 

For a 1DSF chain in the Luttinger liquid phase (𝑉 ≤ 2) in the thermodynamic limit, the 

magnitude of the correlation function |𝐹(𝑥)| obeys a power law4: 

|𝐹(𝑥)|  =  𝐴|𝑥|−2𝐾 (1.21) 

Here 𝐴 und 𝐾 are two fit parameters, whereby the exponent 𝐾 plays a special role here. 

It is called Luttinger liquid parameter and it is an indicator for the breakdown of the 

LL phase and thus the indicator for the transition to another phase. In the LL phase, 

𝐾(𝑉) decreases from the value 𝐾(0) = 1 for a non-interacting chain with larger 𝑉 until it 

reaches the value 𝐾(𝑉cdw) = 1/2 at the theoretical critical point 𝑉cdw = 2 and initiates 

the breakdown of the LL phase4: 

𝐾(𝑉)  =  
𝜋

2

1

𝜋 − arccos(𝑉 2⁄ 𝑡)
 (1.22) 

This behavior of the LL parameter is exploited in Chapter 2.7 to determine the critical 

value of the 1DSF chain. It should also be mentioned that in the CDW phase (𝑉 > 2) of 

an infinite 1DSF chain, the density 〈𝑛𝑥〉 is no longer constant and therefore the 

interpretation of the correlation function and the LL parameter becomes difficult. But 

even in a finite 1DSF chain in the metallic phase, the density 〈𝑛𝑥〉 may fluctuate slightly, 

so that the correlation function may deviate from a perfect power law behavior (see 

Chapter 2.7). 
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1.7. THE 5 USED METHODS TO EXTRACT 

CRITICAL VALUE 

This chapter presents methods for determining the theoretical critical value 𝑉cdw, 

which indicates the point at which a phase transition occurs between the metallic and 

CDW phases. These methods are not limited to a specific observable or model. Some 

methods work for a single observable in a chain, while others can handle multiple 

observables in a chain or even work across different models. 

1.7.1. Method #1: Discontinuity or Extremum in an 
Observable of a Finite System 

In the first method, the critical value is extracted directly from the plot of the observable 

𝑂(𝑉) of a finite system. The phase transition is revealed by a discontinuity or extremum 

in the 𝑂(𝑉) plot. This method can be applied to the central charge 𝑐(𝑉) of a 1DSF chain 

where it exhibits an extremum (see Chapter 2.2) or it can be applied to multiple 

observables of the 1221 ladder that show a discontinuity (see Chapter 4). 

1.7.2. Method #2: Discontinuity or Extremum in an 
Observable of an Infinite System 

The second method requires a little more work. As in the first method, the critical value 

is determined from the extremum or discontinuity of the function 𝑂(𝑉). However, for 

this, the observable must first be determined for an infinite chain: 𝑂(𝑉, 𝐿 → ∞). The 

method works as follows: 

1. Plot the observable 𝑂(1/𝐿) as a function of the inverse length 1/𝐿 for different 

interaction parameters 𝑉. 

2. Fit the observable 𝑂(1/𝐿) with a suitable function (usually a polynomial function 

up to 4th order) and extrapolate the function to the vertical axis intercept where 

1/𝐿 = 0. The intercept 𝑂(𝑉, 1/𝐿 = 0) ≔ 𝑂∞(𝑉) with the vertical axis is then 

the extrapolated value of the observable for an infinite chain. 

3. Plot the extracted axis intercepts 𝑂∞(𝑉) as a function of 𝑉 and read off the 

extremum. The extremum is close to the phase transition. 

The problem with this method is that the extremum only appears when a suitable fit 

function is used. An inappropriate choice of fit function and the method is useless. 

Another problem is that the observable 𝑂(1/𝐿) has a different functional behavior in the 
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different phases. Therefore, fitting both phases with a single function leads to a systematic 

error in one of the phases. 

This method works well with the single-particle gap and partially with the excitation gap 

of a 1DSF chain. 

1.7.3. Method #3: Exponential Fit Near Opening Gap 

The third merthode is mainly tailored to the single-particle gap. According to the theory, 

the single-particle gap opens exponentially slowly near the phase transition3 with 𝐴 =

16𝜋, 𝐵 = 𝜋2/2 and 𝑉c = 𝑉cdw = 2: 

𝑂(𝑉) = 𝐴 exp(−
𝐵

√𝑉 − 𝑉c
) (1.23) 

Therefore, this behavior can be used to fit the single-particle gap, using 𝐴, 𝐵 and 𝑉c  as fit 

parameters. From the fit of the region near the phase transition, the critical value 𝑉c can 

be determined. To make the fit consistent the single-particle gap is fitted between 𝑉 =

2.1 and 𝑉 = 6. 

Gebhard et al (2023) have determined the critical value very accurately by fitting the 

single-particle gap3. This method is applied in this work not only to single-particle gap, 

but also to excitation gap (see Chapters 2.3 and 2.4). 

1.7.4. Method #4: Phase Independent Fit  

To overcome the problem with the systematic error of the second method or the 

impossibility to extract the intercept with the vertical axis, this thesis postulates the 

following new method for extracting the critical value in thermodynamic limit: Consider 

a system with two or more phases. Calculate a suitable observable 𝑂(𝐿) for this system 

as a function of the system size 𝐿. Make a fit of 𝑂(𝐿) in the region [𝐿, 𝐿], where 𝑂(𝐿) 

exhibits the same functional behavior in both phases as shown in Figure 1.12. 

As will be shown in the measurements, the fit with the power law is in many cases the most 

universal and the most accurate. Of course, other fit functions (for example a linear one) can 

also be tried. What is important here is that the chosen fit function should fit both phases 

equally well: 

𝑂(𝐿) = {
𝑂′𝐿 + 𝑎 (linear)

𝑎𝐿𝜅 (power law)
something else

 
(1.24) 
 



Chapter: Introduction   27 

Here 𝑂′ is the derivative of 𝑂(𝐿) and used in this method just like 𝑎 and 𝜅 as fit parameter.  

The method in combination with the power law, works as follows: 

1. Plot the observable 𝑂(𝐿) for different interaction parameters 𝑉 on a double 

logarithmic scale. A power law behavior on a double logarithmic scale must result 

in a straight line. 

2. Find the region of 𝑂(𝐿) for all 𝑉 that behaves according to the power law and 

fit that region. 

3. Extract the power law exponents 𝜅 of the fits for different 𝑉 and plot 𝜅(𝑉). 

4. Read off the extremum of the function 𝜅(𝑉). The extremum is near the phase 

transition and provides the critical value 𝑉cdw. 

1.7.5. Method #5: Intersection of an Observable with a 
Special Value 

This method takes advantage of the fact that the function 𝑂(𝑉) crosses a certain value 

𝑂int, which is at the critical value 𝑉c. This particular value 𝑂int is predicted by theory. For 

example, LL theory predicts that when the LL parameter is 𝑂int(𝑉c) = 𝐾(𝑉c) = 0.5, the 

LL phase breaks down and the interaction potential at this point is equal to the critical 

value 𝑉c (see Chapter 2.2 and 2.7 for its application). 

This method assumes that the model shows a LL phase and the LL parameter can be 

determined, for example, by using correlation functions. 

 

Figure 1.12: Find and fit equal functional behavior of an observable 𝑂(𝐿)  in both phases X and Y. Power 

law behavior was found on a double logarithmic scale in both phases. This power law region inside [𝐿, 𝐿] 

is fitted for different 𝑉. The power law exponent 𝜅(𝑉) could provide critical value for thermodynamic limit 

as a function of 𝑉. 
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2. RESULTS FOR 1DSF 

CHAIN 

First, the 1DSF chain is investigated, where the critical value 𝑉cdw = 2 is known. Different 

observables are calculated for different parameters and it is checked how well the 

simulated results agree with the theoretical results and whether the critical value can be 

extracted from these results. 

2.1. ENTANGLEMENT ENTROPY 

Figure 2.1 shows the entropy 𝑆(𝐿) calculated with DMRG as a function of the length 𝐿 

and Figure 2.2 show the entropy 𝑆(𝑉) as a function of the interaction potential 𝑉 for 

an odd chain without CCS. 

Figure 2.1: Entropy 𝑆(𝐿) 
of an odd chain length 
without CCS as a 

function of 𝐿 for various 

interaction potentials 𝑉.  
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• For 𝑉 much smaller than 2, the entropy 𝑆(𝐿) behaves logarithmically according 

to Eq. (1.13), and the entropy diverges with 𝐿, as predicted by the Conformal 

Field Theory. 

• Near the phase transition 𝑉 ≈ 2: The behavior is not clear. It could be 

logarithmic, but also polynomial. This, by the way, is the problem that is later 

avoided with the Phase Independent Fit method. 

•  For 𝑉 much larger than 2, the logarithmic fit is not suitable. The 𝑆(𝐿) data 

points are best fit with a polynomial function of 2nd order3: 

𝑆(𝐿) = 𝑎1 +
𝑎2

𝐿
+

𝑎3

𝐿2
 (2.1) 

In the thermodynamic limit of the CDW phase, the entropy 𝑆(𝑉) as a function of 𝑉 must 

have a constant value 𝑎1 according to Eq. (2.1) and thus be independent of length. 

However, as Figure 2.2 shows, for an odd chain without CCS, this is only satisfied for a very 

large interaction potential 𝑉. This is also true for an even chain with/without CCS. For an 

odd chain with CCS, the entropy is already length independent starting at 𝑉 ≈ 3. Despite 

some differences depending on the parity of the chain length and CCS symmetry, all data 

points 𝑆(𝐿) show either logarithmic (1.13) or polynomial (2.1) behavior. 

The extraction of the critical value 𝑉cdw = 2 from the entropy 𝑆(𝑉) seems to be 

impossible here, because the function 𝑆(𝑉) shows neither a discontinuity nor an 

extremum near 𝑉 ≈ 2. However, it is possible to apply method #1 to the slope 𝑆 ′(𝑉) =

𝛥𝑆 𝛥𝑉⁄  of the entropy to obtain a definite result for the critical value. 

As Figure 2.3 (inset) shows, the slope 𝑆′ of the entropy has a minimum 𝑆′(𝑉min) at 𝑉min, 

which goes towards the critical value 𝑉cdw = 2 with the larger chain length, but 

Figure 2.2: Entropy 

𝑆(𝑉) of a 1DSF chain 
without CCS as a 

function of 𝑉 for 
various lengths. 
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unfortunately does not reach it. A plot of 𝑉min(𝐿) as a function of length 𝐿 shows that a 

larger length is necessary to best approximate the critical value. The best approximation 

𝑉c for the largest length investigated is listed in Table 2.1. This method provides only a 

rough estimate for the critical point. 

Parity [CCS] 𝑉c Deviation 

Even [both] 2.15 7.5% 

Odd [yes] 2.35 17.5% 

Odd [no] 2.5 25% 

Table 2.1: Critical values using minima of 𝑆′(𝑉) and their maximum deviation from the theoretical value. 
Even chain has two local minima. Here, the minimum closer to the critical point was taken. 

A better way to determine the critical value is to use the Phase Independent Fit method 

described in Chapter 1.7.4, as shown in Figure 2.4. 

For lengths starting at approximately 𝐿 ≈ 400, the entropy 𝑆(𝐿) is phase-independently 

linear. Therefore, a linear fit is suitable here: 

Figure 2.3: Minimum 

𝑉min of the slope 𝑆′(𝑉) 
of entropy approaches 
the region of the 
numerical critical value 

𝑉c = 2.35. An odd 
chain with CCS is used. 

Figure 2.4: Phase-
independent linear fit of 

the entropy 𝑆(𝐿) for 

different 𝑉. Only the 
colored four points 

representing large 𝐿 are 
fitted. 
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The determined slopes 𝑆 ′(𝑉) are plotted for different interaction potentials 𝑉. In the 

vicinity of the critical region, there is a maximum 𝑆 ′(𝑉c) at 𝑉c deviating 10% to 20% from 

the exact value 𝑉cdw = 2 (see Table 2.2). 

Parity [CCS] 𝑉c                  Deviation 

Even [both] 1.6 20% 

Odd [yes] 1.8 10% 

Odd [no] − − 

Table 2.2: Determined critical values using the linear fit of entropy 𝑆(𝐿). Odd chain without CCS has no 
local extremum. 

There is a possibility to bring the critical value still far below 10% deviation. For this 

purpose, the 𝑆(𝐿) curves for different 𝐿 starting at length 𝐿 ≈ 200 are fitted with the 

power law (1.24) (Phase Independent Fit method), as shown in Figure 2.7. The extracted 

exponents 𝜅(𝑉) are plotted as a function of 𝑉 and the maximum 𝑉c is read off from 

the plot. 

As Figure 2.6 shows, the critical value can be determined surprisingly well with the Phase 

Independent Fit method - the deviation from the exact value is less than 5% for an odd 

chain with/without CCS! 

The error 𝑉err of the critical value 𝑉c ± 𝑉err is determined by the distance of 𝑉c to the 

neighboring point 𝑉 and it is assumed to be the most dominant error in this work. 

Parity [CCS] 𝑉c ± 𝑉err             Deviation 

Even [both] 2.1 ± 0.05 7.5% 

𝑆(𝑉, 𝐿 > 400) = 𝑆 ′𝑉 + 𝑎 (2.2) 

Figure 2.5: Slopes 𝑆′(𝑉) 
from the linear fits of 

𝑆(𝐿) for different 𝑉 and 
other parameters of the 
chain. A maximum 
occurs near the phase 
transition. 
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Parity [CCS] 𝑉c ± 𝑉err             Deviation 

Odd [both] 2 ± 0.05 2.5% 

Table 2.3: Determined critical values by using the power law fit of entropy 𝑆(𝐿). 

2.2. CENTRAL CHARGE 

In order to determine central charge 𝑐(𝑉), the entropy must be determined for two 

different lengths 𝐿 and 𝐿′. Figure 2.9 and Figure 2.8 show central charge 𝑐(𝑉) as a function 

of 𝑉 for different length combinations (𝐿, 𝐿′). Figure 2.9 shows simulations without and 

Figure 2.8 with CCS. The combinations without CCS are less accurate in determining the 

critical value and deviate more from the behavior in the thermodynamic limit as described 

in Chapter 1.6.2. Therefore, the simulations without CCS are not discussed further here. 

• (𝑳, 𝑳′) = (𝐨𝐝𝐝, 𝐨𝐝𝐝): This combination with CCS is length independent and best 

reflects the predictions of the theory, namely 𝑐(𝑉) = 1 for small 𝑉 and 𝑐(𝑉) = 0 

Figure 2.6: Exponents 
extracted from the fit 

of 𝑆(𝐿) for different 

𝑉. Dashed lines are for 
eye guidance. 

Figure 2.7: Finite-size 

scaling 𝑆(𝐿) of 
entropy on a double 
logarithmic scale. The 
blue points are fitted 
with the power law. 
Dashed lines are for 
eye guidance. 



34   Chapter: Results for 1DSF chain 

for large 𝑉. Near the theoretically predicted phase transition at 𝑉cdw = 2, a 

maximum 𝑉c occurs. 

• (𝑳, 𝑳′) = (𝐨𝐝𝐝, 𝐞𝐯𝐞𝐧): This combination with CCS has a neither perfectly formed 

metallic phase nor a CDW phase. Near the theoretical phase transition, 𝑐(𝑉) falls 

into the negative because here the shorter even chain is more entangled than the 

longer odd chain: 𝑆(𝐿′) > 𝑆(𝐿).4 The 𝑐(𝑉) curve has a maximum, which, 

however, would provide a less accurate critical value than for the (odd,odd) 

length combination. What is interesting about this length combination is the zero 

crossing 𝑐(𝑉c) ≈ 0, which happens near the critical point and becomes more 

accurate with a smaller length difference 𝐿′ − 𝐿. Whether this zero crossing is 

purely "accidental" near 𝑉cdw = 2 is unclear. The disadvantage of this zero 

crossing is that it is length dependent. A length-independent candidate for the critical 

point 𝑉c is the intersection of all 𝑐(𝑉) curves of different length combinations.  

• (𝑳, 𝑳′) = (𝐞𝐯𝐞𝐧, 𝐞𝐯𝐞𝐧): In this combination, the CDW phase is hardly formed 

and is only reached for very large 𝑉 ≥ 6. Also the maximum has a deviation of 

more than 30% from the critical value. 

• (𝑳, 𝑳′) = (𝐞𝐯𝐞𝐧, 𝐨𝐝𝐝): With this combination, the metallic phase is maintained 

to approximately 𝑉 ≈ 2, as predicted by theory. Starting from 𝑉 ≈ 2, however, it 

does not fall to zero, but increases and saturates at a positive finite value.  This 

combination, unlike all other length combinations, yields a minimum in the phase 

transition region. 

The (𝐞𝐯𝐞𝐧, 𝐨𝐝𝐝) as well as (𝐞𝐯𝐞𝐧, 𝐞𝐯𝐞𝐧) length combination with CCS, but also all 

length combinations without CCS seem to be rather useless for the determination of the 

critical point. The combinations (𝐨𝐝𝐝, 𝐨𝐝𝐝) and (𝐨𝐝𝐝, 𝐞𝐯𝐞𝐧) on the other hand 

provide useful possibilities to determine the critical point approximately. Therefore, these 

length combinations will be applied to the (alternating) ladder in the next chapters. Table 

2.4 summarizes the results with CCS to determine the critical point using central charge. 
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Method (𝑳, 𝑳′) CCS 𝑽𝐜 Deviation 

Extremum in 𝑐(𝑉) of a 

Finite System 
(333, 255) yes 1.85 ± 0.01 13% 

Zero Crossing  

𝑐(𝑉c) = 0.001 ≈ 0 
(333, 256) yes 2.08 ± 0.01 4% 

Table 2.4: Determined critical value 𝑉c and its deviation from the theoretical value by using central charge. 

Figure 2.8: Central 
charge as a 

function of 𝑉 with 
CCS for different 
length 
combinations. 

 

 

Figure 2.9: Central 
charge as a 

function of 𝑉 
without CCS for 
different length 
combinations. 
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2.3. EXCITATION GAP 

Figure 2.10 shows the energy gap 𝛥𝐸(𝑉) as a function of 𝑉 for an odd chain length 

without CCS. As can be seen, the energy gap decreases with larger 𝐿 for all 𝑉. This behavior 

is also observed for an even chain with/without CCS. To verify the implementation of the 

program, the exact energy (1.7) of a non-interacting chain is compared with the calculated 

values 𝛥𝐸(𝑉 = 0). They agree perfectly. 

As Figure 2.11 shows, the energy gap 𝛥𝐸(𝑉) vanishes (to within two decimal places) in 

the thermodynamic limit in both phases. This behavior is theoretically expected, as 

described in the introductory chapter: In the metallic phase (𝑉 ≤ 2) no energy gap exists 

and in the CDW phase (𝑉 > 2) the ground state is doubly degenerate, which is why the 

difference of the smallest two energy eigenvalues of the Hamiltonian (1.8) or (1.9) is zero. 

The finite-size effects as well as DMRG truncation lead to the fact that the energy gap 

𝛥𝐸(𝑉) is not perfectly zero.  

Figure 2.10: Energy 

gap as a function of 𝑉 
has a maximum that 
shifts with increasing 
length to the phase 

transition 𝑉cdw = 2. 

Figure 2.11: On a double 
logarithmic plot, the 

energy gap 𝛥𝐸(1/𝐿) is 
linear in the metallic 

phase for all 𝐿 and linear 

only for large 𝐿 in the 
CDW phase. The 
bordered points are 
fitted with the power 
law. The dashed lines are 
for eye guidance. 
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Figure 2.11 also reveals that the energy gap falls off at different rates in the two phases: 

• For 𝑉 smaller than 2: For odd/even chain lengths with/without CCS, the energy gap 

𝛥𝐸(1/𝐿) as a function of 1/𝐿 shows linear behavior for all 𝐿. Thus, the energy 

gap 𝛥𝐸(1/𝐿) obeys a power law. In this phase, the power law exponent is 𝜅 = 1. 

• For 𝑉 larger than 2:  There is a deviation of 𝛥𝐸(1/𝐿) from a linear behavior on 

a double-logarithmic scale for small 𝐿. In this phase, the power law exponent is 

𝜅 = 0 for larger 𝐿 starting at 𝐿 ≈ 100.  The different value of the exponent in 

different phases is later exploited to determine the critical value.  

The 𝛥𝐸(𝑉) data points for finite chain lengths also show a length-dependent maximum 

that shifts toward the theoretically predicted phase transition with increasing length (see 

Figure 2.10). 

How does 𝛥𝐸(1/𝐿) behave as a function of 1/𝐿 for an odd chain with CCS? Here it also 

approaches zero in the metallic phase with the power law, but in the CDW phase the 

energy gap approaches a non-zero value 𝛥𝐸∞ polynomially of second order3 (Figure 

2.12): 

𝛥𝐸 (
1

𝐿
) = 𝐴 (

1

𝐿
)
2

+ 𝐵
1

𝐿
+ 𝛥𝐸∞  (2.3) 

Why this different behavior? For even chains the CDW ground state is degenerate, 

therefore 𝛥𝐸(1/𝐿) goes to zero in the thermodynamic limit. For odd chains with CCS, on 

the other hand, the degeneracy is lifted because the two degenerate states |𝐸0⟩ and |𝐸1⟩ 

have different particle numbers: 𝑁0 = (𝐿 + 1)/2 and 𝑁1 = 𝑁0 − 1 (see Figure 1.6). Thus, 

at first glance, 𝛥𝐸 should correspond to the single-particle gap 𝐸p discussed in Chapter 

2.4. However, the simulation of the excitation gap (Figure 2.13) yields only half of the 

Figure 2.12: Finite-size 
scaling of the energy gap 

for different 𝑉, 
approximated by the 
2nd order polynomial 
function. The 
intersection points with 
the vertical axis 
represent the energy gap 
of an infinite chain. 
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single-particle gap (Figure 2.15). The reason for this is the rounding off of the number of 

particles 𝑁 in the case of odd chains, which leads to a chain that is not half-filled. For 

example, for a chain with 𝐿 = 5, the fermion number 𝑁 = 𝐿/2 is rounded off to 2. 

The extraction of the intercepts 𝛥𝐸∞(𝑉) for different 𝑉 of and odd chain with CCS yields 

the behavior of 𝛥𝐸(𝑉) in the thermodynamic limit (see Figure 2.13):  

• For 𝑉 much smaller than 2: The energy gap 𝛥𝐸(𝑉) is zero. 

• Near the phase transition (𝑉 ≈ 2): The energy gap 𝛥𝐸(𝑉) opens exponentially 

according to Eq. (1.23). 

• For 𝑉 much larger than 2: The energy gap 𝛥𝐸(𝑉) is proportional to 𝑉. 

The exponential behavior at the phase transition allows the extraction of the critical value 

with the Exponential Fit Near Opening Gap method, by fitting the energy gap 𝛥𝐸(𝑉) in 

the range: 2.1 < 𝑉 < 6 using Eq. (1.23). The resulting critical value of 𝑉c = 2.01 ± 0.06 

is very close to the theoretical value 𝑉cdw = 2, but there is a deviation in 𝑉c depending on 

whether the arbitrary upper fit limit is chosen at 𝑉 = 4 or, for example, at 𝑉 = 6. The 

resulting (estimated) error is 𝑉err ≈ 0.06. As mentioned in the introductory chapter, for 

the Exponential Fit Near Opening Gap method, the observables are always fitted 

between 𝑉 = 2.1 and 𝑉 = 6.  

The observed power law behavior (Figure 2.11) in finite-size scaling of 𝛥𝐸(1/𝐿) in both 

phases, allows the Phase Independent Fit with the power law (1.24). Figure 2.14 shows 

the exponents |𝜅(𝑉)| extracted from the fits in Figure 2.11. As can be seen, the exponent 

|𝜅(𝑉 ≪ 2)| = 1 as a function of 𝑉 is constant 1 in the metallic phase, bends to an 

extremum at the phase transition and saturates in the CDW phase either at |𝜅(𝑉 ≫ 2)| =

Figure 2.13: Excitation gap 

𝛥𝐸(𝑉) of an odd chain 
length with CCS exhibits a 
minimum and behaves 
exponentially near the 
phase transition. 
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2 or at |𝜅(𝑉 ≫ 2)| = 0. The extremum of |𝜅(𝑉)|, for example for an odd chain with CCS, 

has only a deviation of 2.5% from the theoretical value 𝑉cdw = 2 in the thermodynamic 

limit! 

The following Table 2.5 summarizes all methods that, applied to the excitation gap, 

approximate a theoretical critical value 𝑉cdw = 2. The rows marked in green represent the 

best methods with accuracy below 5%. 

Method Parity [CCS] 𝑉c ± 𝑉err Deviation 

Extremum in 𝛥𝐸(𝑉) of an Infinite 

System 
Odd [yes] 1.9 ± 0.05 7.5% 

Exponential Fit near the Opening Gap Odd [yes] 2.01 ± 0.06 3.5% 

Extremum in 𝛥𝐸(𝑉) of a Finite System Odd [no] 2.10 ± 0.05 7.5% 

Extremum in 𝛥𝐸(𝑉) of a Finite System Even [both] 2.05 ± 0.05 5% 

Phase Independent Fit of 𝛥𝐸(1/𝐿) Even [both] 2 ± 0.05 2.5% 

Phase Independent Fit of 𝛥𝐸(1/𝐿) Odd [yes] 1.9 ± 0.05 7.5% 

Phase Independent Fit of 𝛥𝐸(1/𝐿) Odd [no] 2 ± 0.05 2.5% 

Table 2.5: Extracted critical values 𝑉c with different methods applied to the calculated energy gap 𝛥𝐸(𝑉). 

Figure 2.14: Exponents 

|𝜅(𝑉)| extracted from 

the fits for different 𝑉. 
They exhibit an 
extremum at the phase 
transition. 
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2.4. SINGLE-PARTICLE GAP 

Theoretically, the single-particle gap 𝐸p(𝑉) for an infinite chain opens exponentially at 

the transition 𝑉cdw = 2 to the CDW phase according to Eq. (1.23) and increases linearly 

with 𝑉 in the CDW phase. This behavior is confirmed for finite even chains with/without 

CCS and for odd chains with CCS in the extrapolated thermodynamic limit.  

Figure 2.15 shows single-particle gap 𝐸p(𝑉) as a function of 𝑉 for different odd chain 

lengths with CCS. To obtain the 𝐸p(𝑉, 𝐿 → ∞) curve for an infinite chain, the data points 

𝐸p(1/𝐿) as a function of 1/𝐿 are fitted with a polynomial function of second order (2.3) 

as in the case of the energy gap investigated in the previous chapter and extrapolated up 

to the vertical intercept. Zooming in close to the phase transition reveals a minimum at 

𝑉c = 1.8 ± 0.05, which deviates from the theoretical value by 12.5%. However, this 

minimum is very small, so it is probably sensitive to convergence errors.  

Figure 2.15: Single-

particle gap 𝐸p(𝑉) for 

odd lengths with CCS. 
The extrapolated curve 
for an infinite chain 
shows a minimum near 
the phase transition. 
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Of course, the exponential opening of the gap above the phase transition 2.1 ≤ 𝑉 ≤ 6 

can also be fitted with Eq. (1.23) to determine the critical value. In this case, the result is 

a more accurate value 𝑉c = 1.92 ± 0.09 which differs from the theoretical value by 8.5%. 

A completely different behavior is shown by the single-particle gap 𝐸p(𝑉) as a function 

of 𝑉 for an odd chain length without CCS (see Figure 2.16):  

• For 𝑉 ≲ 2: Single-particle gap 𝐸p(𝑉) decreases with the power law (1.24) with 

increasing length.  

• Near the phase transition (𝑉 ≈ 2): Single-particle gap 𝐸p(𝑉) grows and 

reaches a maxmum 𝑉max and then decreases with 𝑉. The maxmum is length 

dependent and shifts in the direction of the theoretical phase transition of an 

infinite chain, but does not reach the correct value 𝑉cdw = 2. 

• For 𝑉 ≳ 2: Single-particle gap 𝐸p(𝑉) decreases for large lengths with the power 

law. For the parameter choice (odd, without CCS), the single particle gap 𝐸p(𝑉) 

behaves like the previously discussed energy gap 𝛥𝐸 of an even chain with/without 

CCS or odd chain without CCS. 

All 𝐸p(𝑉) data points have an extremum, so methods from Chapter 1.7.1 (for a finite 

system) or from Chapter 1.7.2 (for an extrapolated infinite system) can be used to 

determine the critical point (see Table 2.6):  

• Extremum in 𝐸p(𝑉) of a Finite System method is applied to the odd chain without 

CCS and requires in this case the correct choice of a fit function for the maxima 

Figure 2.16: Single-
particle gap for an 
odd chain without 
CCS decays to zero 
in the CDW phase 
and has a length-
dependent 
maximum. 
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shift. A linear fit seems to be unsuitable here, which is why this method yields a 

deviation of 20% from the theoretical value. 

• Extremum in 𝐸p(𝑉) of an Infinite System method is applied to chains with all 

other parameters. It is applied to the minimum of 𝐸p(𝑉) for an infinite chain 

extrapolated from finite-site scaling. The minimum has a deviation of 10% from 

the theoretical value. The inaccuracy could be due to the fact that the minimum 

is small: 𝐸p(𝑉c) ≈ 10−4 and starting at the fourth decimal place the convergence 

error distorts the result. 

The application of the Phase Independent Fit method to the finite-size scaling of 

𝐸p(1/𝐿) also does not give a more accurate result for the critical value, as Table 2.6 shows. 

However, the behavior of the exponent |𝜅(𝑉)| as a function of 𝑉 is interesting (see Figure 

2.17): 

• The exponent |𝜅| approaches |𝜅| → 2 for 𝑉 → ∞ if the single-particle gap 𝐸p 

or the excitation gap 𝛥𝐸 do not open in the CDW phase. 

• The exponent |𝜅| approaches |𝜅| → 0 for 𝑉 → ∞ if the single-particle gap 𝐸p 

or the excitation gap 𝛥𝐸 open exponentially, as theoretically predicted, and 

increase linearly for large 𝑉. In this case, the exponent |𝜅(𝑉)| behaves similarly 

to the previously discussed central charge 𝑐(𝑉) as a function of 𝑉 for (odd, odd)-

length combinations. In a future work, it would be interesting to investigate how 

the quantities 𝑐(𝑉) and |𝜅(𝑉)| are theoretically related. 

Table 2.6 summarizes all methods applied to the single-particle gap. The methods marked 

in green are best suited for this observable. 

Figure 2.17: The 
extracted exponents 

|𝜅|(𝑉) of the powerlaw 

fit as a function of 𝑉 are 
1 in the metallic phase 
and saturate in the 
CDW phase. There is an 
extremum close to the 
phase transition. 
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Method Parity [CCS] 𝑉c Deviation 

Extremum in 𝐸p(𝑉) of an Infinite System Even [both] 1.8 ± 0.1 10% 

Extremum in 𝐸p(𝑉) of an Infinite System Odd [yes] 1.8 ± 0.05 10% 

Extremum in 𝐸p(𝑉) of a Finite System Odd [no] 2.39 ± 0.05 19.5% 

Exponential Fit Near Opening Gap Even [both] 1.945 2.75% 

Exponential Fit Near Opening Gap Odd [yes] 1.928 ± 0.01 3.65% 

Phase Independent Fit of 𝐸p(1/𝐿) Odd [no] 2.3 ± 0.05 17.5% 

Phase Independent Fit of 𝐸p(1/𝐿) Odd [yes] 1.75 ± 0.1 17.5% 

Phase Independent Fit of 𝐸p(1/𝐿) Even [both] 1.5 ± 0.1 30% 

Table 2.6: Extracted critical values 𝑉c with different methods applied to the calculated single-particle gap 

𝐸p(𝑉). If no error 𝑉err is specified, then it is negligible. 

2.5. CDW ORDER PARAMETER 

The CDW order parameter 𝛿(𝑉) theoretically reveals the phase transition in the 

thermodynamic limit, increasing from 𝛿(𝑉) = 0 in the metallic phase to the value 𝛿(𝑉) =

0.5 for 𝑉 → ∞.3 Simulation of the magnitude |𝛿(𝑉)| on a finite chain shows similar 

behavior. However, convergence with 𝐿 is not sufficient to efficiently and accurately 

extract the theoretical critical value 𝑉cdw = 2. 

•  Odd chain with CCS: In the region 𝑉 ≲ 2, the order parameter |𝛿(𝑉)| 

approaches zero with increasing chain length 𝐿. No extremum occurs in the 

critical region, as in the case of the single-particle gap 𝐸p(𝑉) and excitation gap 

𝛥𝐸(𝑉). In the region 𝑉 ≳ 3, the order parameter is length-independent and, as 

theoretically expected, approaches |𝛿(𝑉)| = 0.5 for 𝑉 → ∞ (see Figure 2.18). 

The convergence of the order parameter |𝛿(𝑉)| can be fitted with the 2nd degree 

polynomial (1.18). The obtained limit value differs only by 0.00004% from the 

theoretical limit |𝛿(𝑉 → ∞)| = 0.5. 
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To obtain the order parameter |𝛿(𝑉, 𝐿 → ∞)| for an infinite chain, the data points |𝛿(𝐿)| 

for different 𝑉 are extrapolated with a polynomial function of second order (2.3), in the 

same way as for the single-particle gap and excitation gap. However, for the order 

parameter the polynomial fit does not work so well, as Figure 2.18 shows. In the region 

𝑉 ≲ 2 the order parameter |𝛿(𝑉)| for length 𝐿 = 2401 converges to zero better than the 

polynomially extrapolated thermodynamic limit. 

• Even chain with/without CCS and odd chain without CCS: Here, the 

behavior in the metallic phase is the same as for an odd chain with CCS. The order 

parameter |𝛿(𝑉)| for larger 𝑉 on the other hand, remains much smaller than 0.5. 

This is because DMRG here leads to a linear combination of the two ground states 

|𝐸0⟩ and |𝐸1⟩ (see Figure 1.10). 

For such an observable as 𝛿(𝑉), which has neither an extremum nor a discontinuity, the 

derivative |𝛿 ′(𝑉)| = |𝛥𝛿|/𝛥𝑉 can be investigated to see if it has an extremum. As Figure 

2.19 shows, the derivative indeed shows a maximum, which moves into the theoretically 

predicted critical region for longer chains. However, the convergence is poor here and 

the limit 𝐿 → ∞ does not lead the maximum to the position 𝑉cdw = 2. Table 2.7 

summarizes the determined maxima using the derivative of the CDW order parameter. 

Figure 2.18: 

Magnitude |𝛿(𝑉)| of 
the order parameter 
for odd lengths with 
CCS converge very 
slowly to the 
thermodynamic limit. 
The inset shows the 
behavior of the order 

parameter for large 𝑉. 
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Method Parity [CCS] 𝑉c Deviation 

Extremum in |𝛿 ′(𝑉)| of a Finite System for 

𝐿 = 801 
Odd [no] 2.6 ± 0.1 35% 

Extremum in |𝛿 ′(𝑉)| of a Finite System for 

𝐿 = 2401 
Odd [yes] 2.45 ± 0.05 25% 

Extremum in |𝛿 ′(𝑉)| of a Finite System for 

𝐿 = 400 
Even [both] 2.6 ± 0.1 35% 

Table 2.7: Critical values 𝑉c and their maximum deviation from the theoretical value 𝑉cdw = 2 by using the 

maximum of the magnitude |𝛿 ′(𝑉)| of the derivative of the CDW order parameter. 

The application of other methods to extract the critical value do not work here. The Phase 

Independent Fit method in combination with the power law can be applied here, but the 

resulting exponent |𝜅(𝑉)| as a function of 𝑉 does not have an extremum. 

2.6. DENSITY FLUCTUATION 

Just like the CDW order parameter, the density fluctuation 𝜎2 exploits the particle 

densities ⟨𝑛𝑥⟩. However, the density fluctuation 𝜎2(𝑉) as a function of 𝑉 shows a more 

pronounced transition from the metallic to the insulating phase, as exemplified by Figure 

2.20 for an odd chain with CCS. The interpretation of the results is analogous to the 

interpretation of the results of the CDW order parameter: 

Figure 2.19: Derivative 

|𝛿 ′(𝑉)| of the order 
parameter for an odd 
chain with CCS 
exhibits a length-
dependent maximum. 
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•  Odd chain with CCS: In the region 𝑉 ≲ 2, the density fluctuation 𝜎2(𝑉) 

approaches zero with increasing chain length 𝐿. Density fluctuation near the phase 

transition 𝑉 ≈ 2 does not show an extremum.  In the region 𝑉 ≳ 3, the density 

fluctuation is length independent and approaches 𝜎2(𝑉) → 0.25 for 𝑉 → ∞ as 

theoretically expected. The fit of the finite-size scaling 𝜎2(1/𝐿) with a polynomial 

function of second order provides a better extrapolation of the thermodynamic 

limit than the CDW order prameter, as can be seen in Figure 2.18. 

• Even chain with/without CCS and odd chain without CCS: Here, the 

behavior in the region 𝑉 ≲ 2 is the same as for an odd chain with CCS. In contrast, 

the density fluctuation 𝜎2(𝑉) remains small: 𝜎2 ≪ 0.25, even for large 𝑉. The 

reason here is the same as for the CDW order parameter: The linear combination 

of the two degenerate ground states |𝐸0⟩ and |𝐸1⟩ hides the inhomogeneous 

density of the CDW phase. 

The derivative 𝜎2(𝑉)′ as a function of 𝑉 has a maximum like the CDW order parameter. 

The deviation of the position 𝑉max of the maximum can be reduced by increasing the 

chain length, but the convergence 𝐿 → ∞ is worse than for the CDW order parameter. 

Therefore, the determined critical values 𝑉c are not presented here. 

Figure 2.20: Density 

fluctuation 𝜎2(𝑉) 
for an odd chain with 
CCS converges 
better to zero for 

𝑉 ≲ 2 than CDW 
order parameter.  
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2.7. DENSITY-DENSITY CORRELATION 

FUNCTION 

The magnitude |𝐹(𝑥)| of the density-density correlation function is shown in Figure 

2.21 as a function of the distance 𝑥 to the fixed point 𝑥0 = 𝐿/2 on a double logarithmic 

scale for an odd length 𝐿 = 401 with/without CCS.  

The correlation function oscillates around the value |𝐹(𝑥)| ≈ 0.25, and the amplitude 

increases close to the chain edge (a boundary effect known as Friedel oscillation)15. The 

amplitude of the oscillation increases with larger interaction potential 𝑉 for all 𝑥. The 

same behavior is observed for an even length with/without CCS. The only difference is that 

the oscillation for a fixed 𝑉 is smaller than for odd chain lengths. No power law (1.21) is 

observed as described in Chapter 1.6.8. Thus, method #5 cannot be used to extract the 

Luttinger Liquid parameter to determine the critical value. Interestingly, power law can 

be observed when the right block in the DMRG algorithm is taken as a reflection of the 

left block (of course, this reflection symmetry only works for even chains). Then the 

correlation function 𝐹(𝑥 − 𝑥0) shows oscillations and decays for a not too large distance 

|𝑥 − 𝑥0| according to the power law (1.21). Figure 2.22 shows the difference of an even 

chain with and without reflection symmetry.  

Figure 2.21: Magnitude 

|𝐹(𝑥)| of the 
correlation function for 
an odd chain with CCS. 
The amplitude at the 
edge increases 
approximately 
exponentially. 
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Consequently, from the exponent of the power law fit, the LL parameter 𝐾(𝑉) can be 

extracted as a function of 𝑉. For 𝐾(𝑉c) = 0.5 it should mark the breakdown of the 

Luttinger Liquid - thus providing the critical value 𝑉c. However, the oscillations of |𝐹(𝑥)| 

and no-power-law behavior for large 𝑥, make it difficult to extract the LL parameter. This 

is because a blunt fit of all data points |𝐹(𝑥)| gives a useless result. Therefore, only the 

medium distances for different 𝑉 are fitted, as shown in Figure 2.23.  

The extracted LL parameter 𝐾(𝑉) from the power law (1.21) is plotted as a function of 

𝑉 and compared with the theoretical curve (1.22) in the thermodynamic limit in Figure 

2.24. As can be seen, the calculated curves 𝐾(𝑉) for 𝐿 = 400 and even for 𝐿 = 1000 

deviate from the result of an infinite chain in the range 0 < 𝑉 < 1.5. However, the 

deviation decreases with the length. In the range 1.5 < 𝑉 < 2 the agreement with the 

Figure 2.23: Magnitude 

|𝐹(𝑥)| of the 
correlation function for 
an even chain 
with/without CCS. 
Only the black points 
are fitted with the 
power law for different 

𝑉. The fitted region is 
outlined with the two 
vertical lines. 

Figure 2.22: Comparison 
of the correlation 
function for an even 
chain with/without 
reflection symmetry and 

𝑥0 = 1. A chain with 
reflection symmetry falls 
off with the power law. 
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infinite chain is better. Therefore, the critical value can be read off at the point 𝐾(𝑉c) ≈

0.5. The extracted critical points are summarized in Table 2.8. 

The application of the following correction terms1 gives no improvement in the 

determination of the LL parameter by means of the correlation function: 

𝐹(𝑥) =
𝐶1

𝑥2
+ 𝐶2(−1)𝑥 + (

1

𝑥
)
2𝐾

,   for 𝑉 < 2  (2.4) 

 

Method Parity [CCS] 𝑉c 

Intercept of 𝐾 = 0.5 for 𝐿 = 400 Even [yes] ∼ 2.01 

Intercept of 𝐾 = 0.5 for 𝐿 = 1000 Even [yes] ∼ 2.0  

Table 2.8: Intersection point 𝐾(Vc) of the curve 𝐾(V) with the horizontal line through the point 𝐾 = 0.5 

provides the critical value Vc. 

2.8. SUMMARY 

For most observables investigated, the calculated results of a finite 1DSF chain with odd 

length and with CCS agree well with the theory's predictions in the thermodynamic limit. 

To determine the theoretical phase transition 𝑉cdw = 2 of a 1DSF chain, four 

observables can be used with a maximum deviation of 5% as shown in Table 2.9. The 

Exponential Fit Near Opening Gap is an accurate method, but it can only be used for 

single-particle gap and excitation gap. In the currently published paper by Gebhard et. al 

(2022), the critical point 𝑉cdw = 2 is determined with an accuracy of 7.5% using the 

Figure 2.24: The LL 

parameters 𝐾(𝑉) 
extracted from the 
powerlaw fit of the 
correlation functions 
deviate from the 
theoretical curve for an 
infinite chain. However, 

the 𝐾(𝑉) still provides 
a good estimate of the 
critical point.  
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Exponential Fit Near Opening Gap method applied to single-particle gap. In this work, 

an accuracy of less than 3% was achieved using this method.  

A much better method, which achieves an even higher accuracy of 2.5%, is the Phase 

Independent Fit method. As the study of the 1DSF chain has shown, it was possible to 

apply it successfully not only to the single-particle gap, but also to excitation gap, and 

entropy and that for different parity (even, odd) and CCS symmetry. 

Observable Method Parity [CCS] 𝑉c Deviation 

𝑆 Phase Independent Fit Odd [both] 2 ± 0.05 2.5% 

𝑐 Zero crossing (Odd, Even) [yes] 2.08 ± 0.01 4.5% 

𝛥𝐸 Exponential Fit Near Opening Gap Odd [yes] 2.01 ± 0.06 3.5% 

𝛥𝐸 Phase Independent Fit Even [both] 2 ± 0.05 2.5% 

𝛥𝐸 Phase Independent Fit Odd [no] 2 ± 0.05 2.5% 

𝛥𝐸 Extremum in a Finite System Even [both] 2.05 ± 0.05 5% 

𝐸p Exponential Fit Near Opening Gap Even [both] 1.945 2.75% 

𝐸p Exponential Fit Near Opening Gap Odd [yes] 1.928 3.65% 

Table 2.9: Summary of the best observables and applied methods to determine the critical point of the 
1DSF chain with a maximum deviation of 5%. 
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3. RESULTS FOR 2-LEG 

LADDER 

In the following, a homogeneous 2-leg ladder is investigated in an analogous way. For 

this ladder, the interaction potential along the rungs and legs is set equal: 𝑉 = 𝑉x = 𝑉y. 

The ladder length 𝐿 is the number of lattice sites of one leg. The total number of lattice 

sites is 2𝐿. The ladder is filled with 𝐿 spinless fermions (half-filling case).   

The observables from Chapter 1.6 are investigated as a function of the interaction 

potential 𝑉 and as a function of the ladder length 𝐿, and an attempt is made to extract 

the theoretically predicted critical value at 𝑉cdw = 0 of an infinite ladder. 

Although a 2-leg ladder generally requires a larger dimension 𝑚 for DMRG, in this work 

the dimension 𝑚 = 100 is used as for the 1DSF model and only the number of sweeps 

is increased to 12. The difference of the exact ground state energy 𝐸0,exact calculated 

with Eq. (1.1) of a non-interacting (𝑉 = 0) ladder and the simulated ground state energy 

𝐸0(𝑚 = 100) yields the convergence error: |𝐸0,exact − 𝐸0(𝑚 = 100)| ≈ 0.008 for 𝐿 =

400. This accuracy is also assumed for an interacting ladder (𝑉 > 0). 

Theoretically, it should not make any difference in the simulations whether the ladder length 

𝐿 is chosen as even or odd, because the total number of lattice sites 2𝐿 of a two-leg ladder 

is always even. Therefore, the simulation of a ladder of length 𝐿 and 𝐿 + 1 is expected to 

differ only because of the different number of fermions: 𝑁 and 𝑁 + 1 or because the 

observable exceeds the order of the convergence error. 
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3.1. ENTANGLEMENT ENTROPY 

The entanglement entropy 𝑆(𝐿) of a 2-leg ladder as a function of the ladder length 𝐿, 

for even/odd length with/without CCS, behaves like a 4th degree polynomial function near 

the theoretical phase transition 𝑉cdw = 0 (see Figure 3.1): 

𝑆(𝐿) = 𝐴𝐿4 + 𝐵𝐿3 + 𝐶𝐿2 + 𝐷𝐿 + 𝑆∞  (3.1) 

Thus, in contrast to the 1DSF model, 𝑆(𝐿) of a 2-leg ladder does not exhibit two different 

behaviors (logarithmic and polynomial 2nd degree). Therefore, the Phase Independent 

Fit method for extracting the critical value, which works excellently for the entropy of the 

1DSF chain, could not be applied to the entropy 𝑆(𝐿) of a 2-leg ladder. This is because 

this method only works if an observable exhibits two different functional behaviors, 

depending on the choice of 𝑉. In the critical range −1 < 𝑉 < 1, however, 𝑆(𝐿) exhibits 

only a single behavior (3.1). Therefore, the entropy 𝑆(𝐿) of a 2-leg ladder is not suitable 

for the extraction of the critical value. 

In the thermodynamic limit 𝐿 → ∞, the entropy 𝑆(𝐿) converges toward a constant value 

𝑆∞(𝑉) (for all 𝑉) which depends on 𝑉. The convergence of 𝑆(𝐿) toward a fixed value, is 

also observed in the CDW phase of the 1DSF model. 

Simulation of entropy 𝑆(𝑉) as a function of 𝑉 shows similar behavior to an odd 1DSF 

chain with CCS, but the 𝑆(𝑉) curves of a two-leg ladder are shifted more to the left, to 

smaller 𝑉, as Figure 3.2 shows. This suggests that the phase transition to a CDW phase 

in a ladder happens at smaller interaction potential. The inset of Figure 3.2 also shows 

Figure 3.1: Entropy 𝑆(𝐿) 
of an odd 2-leg ladder 
with CCS as a function of 

𝐿 for various interaction 

potentials 𝑉. Solid line is a 
polynomial fit. 
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that the entropy 𝑆(𝑉) approaches zero exponentially in the limit 𝑉 → ∞ and can be fit with 

Eq. (1.23). 

 

3.2. CENTRAL CHARGE 

The magnitude |𝑐(𝑉)| of the central charge of a finite 2-leg ladder is shown as a 

function of 𝑉 in Figure 3.3. There (𝐿, 𝐿′) = (odd, odd) length combinations are shown 

which worked well for a 1DSF chain. 

• For 𝑉 ≳ 0.9, central charge is zero and the ladder is thus in the CDW phase for 

this parameter range. 

• For 𝑉 < 0.9, central charge fluctuates strongly between |𝑐(𝑉)| = 0 and |𝑐(𝑉)| ≈

0.6. Here, the CDW phase is poorly formed. The fluctuation in |𝑐(𝑉)| is due to 

the fluctuation of the entropy 𝑆(𝑉) in this range (see Figure 3.2). 

• According to the Conformal Field Theory, |𝑐| = 0 in the CDW phase, so the 

critical value here seems to be 𝑉c ≈ 0.9. Also, other length combinations (𝐿, 𝐿′) 

with or without CCS do not provide a better prediction for the theoretical critical 

value at 𝑉cdw = 0 of an infinite ladder. 

Figure 3.2: Entropy 𝑆(𝑉) 
of a 2-leg ladder 
with/without CCS as a 

function of 𝑉 for various 
lengths. The inset shows 

that entropy for large 𝑉. 



54   Chapter: Results for 2-LEG ladder 

 

3.3. EXCITATION GAP 

The excitation gap 𝛥𝐸(𝑉) as a function of 𝑉 for a 2-leg ladder is shown in Figure 3.4. 

• For 𝑉 ≥ 1.2, the excitation gap is zero for all parities with/without CCS as it is 

for an infinite ladder because of the twofold degeneracy of the ground state in the 

CDW phase 𝑉 ≥ 0.1 However, the simulated excitation gap is small but nonzero 

for 0 ≤ 𝑉 < 1.2, which distinguishes it from the result in the thermodynamic 

limit. 

• For 𝑉 < 1.2, the degeneracy of the ground state is slightly eliminated. The non-

vanishing of the excitation gap is also observed for the 1DSF chain and 

exploited to estimate the critical value based on the extremum that occurred. For 

𝛥𝐸(𝑉) of a 2-leg ladder, extrema near 𝑉cdw = 0 also occur, but not unique ones 

as is the case for the 1DSF chain. Rather, the extrema look like a sequence of 

fluctuations that occur because of reaching the order of the DMRG convergence 

error. One can really speak of fluctuations, since a repeated simulation of the 

excitation gap with unchanged parameters yields small changes in this interaction 

range. 

•  In the CDW phase, the ground state is degenerate, so the excitation gap must 

vanish in this phase. The phase transition to a CDW seems to occur at 𝑉c ≈ 1.2. 

Figure 3.3: Central charge 

|𝑐(𝑉)| of a 2-leg ladder for 
(odd, odd) length 
combination with and 
without CCS. 
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3.4. SINGLE-PARTICLE GAP 

The single-particle gap 𝐸p(𝑉)  of a 2-leg ladder as a function of the interaction potential 

𝑉 exhibits a similar behavior to the single-particle gap of a 1DSF chain from Chapter 2.4: 

• For 𝑉 ≫ 1, the gap 𝐸p(𝑉) of an even/odd ladder length with/without CCS grows 

linearly. 

• For 𝑉 < 1, the gap 𝐸p(𝑉) approaches zero. Since the gap becomes very small 

here and may exceed the convergence error, it exhibits fluctuations when zoomed 

in near the critical region (see inset of Figure 3.5). 

Figure 3.4: Excitation 

gap 𝛥𝐸(𝑉) for a 2-leg 
ladder with and without 
CCS. The determined 

critical value 𝑉c ≈ 1.2 
differs strongly from the 

exact value 𝑉cdw = 0 in 
thermodynamic limit. 
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• The gap opens exponentially near the critical region for ladders with CCS. 

Therefore, the Exponential Fit Near Opening Gap method is suitable here. Since 

the gap fluctuates at small 𝑉 and the exponential fit (1.23) is poor or not possible, 

the fit is always started from 𝑉 = 0.9 and carried out up to 𝑉 = 4. With this 

choice of fit limits, the gap of a ladder without CCS deviates from the 

exponential behavior, as shown in Figure 3.5 but still provides an accurate 

critical value. 

Table 3.1 summarizes the critical values 𝑉c determined using the Exponential Fit Near 

Opening Gap method. The gaps of even/odd ladder lengths without CCS are almost identical 

even when zoomed in on the critical region, and they yield the same critical value of 𝑉c =

0.05, deviating from the exact theoretical value 𝑉cdw = 0 in the thermodynamic limit by 

5%. The gap of even and odd ladder lengths with CCS deviates slightly from each other near 

the critical region, possibly due to convergence errors on this small scale. 

Furthermore, the single-particle gap 𝐸p(𝑉) as a function of 𝑉 in the investigated length 

range 200 ≤ 𝐿 ≤ 800 is independent of the length for 𝑉 ≫ 1. For 𝑉 ≪ 1 on the other 

hand, the gap shows a slight dependence on the length. However, the fluctuations are 

within the magnitude of the convergence error, which is why the finite-size scaling 𝐸p(𝐿) 

of the single-particle gap does not provide a meaningful result. The application of the 

Phase Independent Fit method requires a more accurate determination of the single-

particle gap. 

Figure 3.5: Single-
particle gap for 
even/odd ladder lengths 
with and without CCS. 
The exponential fit is 
always made between 

𝑉 = 0.9 and 𝑉 = 4 for 

2-leg ladders. The inset 
shows the magnified 
critical region. Here one 
can see (in some cases) 
the deviation from the 
exact ground state 
energy calculated with 

Eq. (1.11) at 𝑉 = 0.  
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Method Parity [CCS] 𝑉c 

Exponential Fit Near Opening Gap Even [yes] 0.23 

Exponential Fit Near Opening Gap Even/Odd [no] 0.05 

Exponential Fit Near Opening Gap Odd [yes] 0.05 

Table 3.1: Summary of the results using single-particle gap to determine the critical value  
𝑉c of an infinite 2-leg ladder with an exact critical value  
𝑉cdw = 0. 

3.5. CDW ORDER PARAMETER 

The CDW order parameter 𝛿(𝑉) of a 2-leg ladder as a function of 𝑉, as shown in Figure 

3.6, is independent of the ladder length in the investigated length range. A slight length 

dependence only arises when zooming in close to the theoretical phase transition at 

𝑉cdw = 0 (see inset of Figure 3.6). Since the order parameter in this range is of the same 

magnitude as the convergence error, it is not clear whether this length independence is 

actually a physical effect or not. Due to this length independence, the investigation of the 

finite-size scaling 𝛿(𝐿) of the order parameter is meaningless. 

The simulation of the order parameter 𝛿(𝑉) of a finite 2-leg ladder as a function of 𝑉 

exhibits the following behavior. 

• For large interaction potentials 𝑉 ≫ 1: Regardless of the parity of the chain 

length or the CCS symmetry, the magnitude |𝛿(𝑉)| approaches 0.5. The same 

behavior is also observed for a 1DSF chain of odd length with CCS. 

• For small interaction potentials 𝑉 ≲ 1: The order parameter increases 

monotonically from the value 𝛿 = 0, starting at 𝑉 ≈ −1. This means that the 

CDW phase already forms for a finite chain for a negative interaction potential, 

deviating from the theoretically predicted case for an infinite ladder. In the latter 

case, the CDW phase starts to form at 𝑉cdw = 0. 
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The order parameter 𝛿(𝑉) is also in the case of a finite 2-leg ladder a poor quantitative 

indicator for a theoretically occurring phase transition at 𝑉cdw = 0 in the thermodynamic 

limit. Thus, an accurate determination of the critical value with the order parameter is not 

possible. For the quantitative determination of the critical value, the density fluctuation 

discussed in the following chapter is better suited. Nevertheless, the order parameter 𝛿(𝑉) 

shows qualitatively similar behavior to the theory, independent of parity and CSS symmetry. 

3.6. DENSITY FLUCTUATION 

The density fluctuation 𝜎2(𝑉) of a 2-leg ladder as a function of 𝑉 is shown in Figure 

3.7. It shows, just like the CDW order parameter, a minor length dependence in the 

vicinity of the critical region: −1 < 𝑉 < 1. 

• For large interaction potentials 𝑉 ≫ 1: Regardless of the parity of the chain 

length or the CCS symmetry, the magnitude 𝜎2(𝑉) approaches 0.25. The same 

behavior is also observed for a 1DSF chain of odd length with CCS. 

• For small interaction potentials 𝑉 ≲ 1: Something happens here that was not 

observed with the CDW order parameter. The density fluctuation is 

approximately zero. But, when zoomed into this region, a minimum 𝑉c can be 

observed near 𝑉 = 0 - assuming the ladder has no CCS symmetry (see inset of 

Figure 3.7). Because of the slight length dependence of the density fluctuation 

𝜎2(𝑉) in this region, the position of the minimum also varies with ladder length. 

Table 3.2 summarizes the minima for different ladder lengths 𝐿. 

Figure 3.6: CDW order 
parameter for even/odd 
ladder lengths with and 
without CCS. The inset 
shows the magnified 
critical region. 
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𝐿 𝑉c 

101 −0.05 ± 0.06 

201 0.0 ± 0.06 

401 −0.15 ± 0.06 

Table 3.2: Position of the minimum 𝑉c in the density fluctuation 𝜎2(𝑉) for different lengths  
𝐿 of a 2-leg ladder without CCS. The minima are interpreted as critical values. 

3.7. DENSITY-DENSITY CORRELATION 

FUNCTION 

The density-density correlation function |𝐹(𝑥)| has already given results difficult to 

interpret for the 1DSF chain. For the 2leg ladder, the interpretation is even more difficult. 

Figure 3.8 shows an example result for the correlation function of a 2leg ladder of length 

𝐿 = 100 without CCS with respect to the site 𝑥0 = 1: 

• For 𝑉 ≳ 1 the correlation function oscillates, where the amplitude is 

independent of 𝑥, but increases with larger 𝑉. 

• For 𝑉 = 0 the correlation function is constant |𝐹(𝑥)| = 0.25 for all 𝑥. 

• For 𝑉 ≲ 1 the correlation function oscillates as for the case 𝑉 ≳ 1, but the 

oscillation is very small and only visible after zooming in (see inset of Figure 

3.8). The amplitude here decreases from the edge to the center of the ladder, 

but neither exponentially nor according to the power law. This makes the 

interpretation of the correlation function difficult.  

Figure 3.7: Density 
fluctuation for 
even/odd ladder 
lengths with and 
without CCS. The inset 
shows the magnified 
critical region with 
occurring minima. 
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This observable will not be investigated further. Enough methods and other observables 

have already been tested that provide detection of the critical point and information about 

the different phases. It is also possible that I simply made a mistake in the code 

implementation of the correlation function... In a further work the problem with the 

correlation function can be approached more closely. 

3.8. SUMMARY 

Three of the studied observables, the single-particle gap 𝐸p, CDW order parameter 𝛿, 

and the density fluctuation 𝜎2 of a 2-leg ladder, show similar behavior to the 1DSF 

chain. Unfortunately, the order parameter, entropy, central charge and correlation 

function were not useful in determining the critical value. In contrast, the Exponential Fit 

Near Opening Gap method works well even for a 2-leg ladder. However, even those 

methods that have provided an accurate critical value, such as single-particle gap, should 

be viewed with caution. The very small single-particle gap in the vicinity of the phase 

transition is in the order of the convergence error. This leads to fluctuations in the critical region 

and prevents, for example, the use of the Phase Independent Fit method. 

The density fluctuation 𝜎2 of a 2-leg ladder without CCS shows a slightly noticeable 

minimum when zooming in near the critical region, which did not occur in a 1DSF 

chain. This minimum seems to be slightly length dependent, but still provides a fairly 

accurate critical value of the ladder in the thermodynamic limit as shown in Table 3.3. 

Figure 3.8: Correlation 

function |𝐹(𝑥)| with 

𝑥0 = 1 for different 𝑉. 

A ladder of length 𝐿 =
100 without CCS was 
used. Das Inset zeigt die 
The inset shows the edge 

oscillations at 𝑉 = 0.5. 
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If the accuracy of the observables can be improved (by decreasing the convergence error), 

the Phase Independent Fit method can also be applied to a 2-leg ladder. But even with a 

smaller convergence error, the study of the 2-leg ladder is more complex than that of the 

1DSF chain, and the methods that worked for the chain only partially work for the 

ladder. It was this observation in Ref. 6 that motivated the present systematic study 

observables and methods. The following Table 3.3 summarizes the best methods and 

observables for determining the critical value of a 2-leg ladder. 

Observable Method Parity [CCS] 𝑉c 

𝐸p Exponential Fit Near Opening Gap Odd [yes] 0.05 

𝐸p Exponential Fit Near Opening Gap Even/Odd [no] 0.05 

𝜎2 Extremum in a Finite System Odd [no] 0.0 ± 0.06 

Table 3.3: Summary of the best observables and applied methods to determine the critical point  
𝑉c of a 2-leg ladder. 
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4. RESULTS FOR AN 

ALTERNATING 1221-
LADDER 

In the following, the most important system of this work is investigated, namely an 

alternating 1221 ladder. It is a periodic arrangement of the sites as shown in Figure 1.9. 

The interaction potential 𝑉 between all sites is equal. The ladder length is 4𝑚 with 𝑚 =

1,2,3, … The total number of sites 𝐿 = 6𝑚 is always a multiple of six. A half-filled ladder 

has 𝑁 = 𝐿/2 = 3𝑚 spinless fermions. The observables from Chapter 1.6 are studied as 

a function of the interaction potential 𝑉 and as a function of the total number of sites 𝐿. 

The difficulty in studying a half-filled 1221 ladder is that no exact solution in 

thermodynamic limit exists, so the numerical results cannot be compared with theory. 

However, something can be stated numerically about the limiting cases 𝑉 = 0 and 𝑉 → ∞: 

• In the limiting case 𝑉 = 0 of non-interacting fermions, the 1221 ladder is a 

band insulator16 in which the lowest excitations are unbound particle-hole pairs. 

The energy gap 𝛥𝐸 remains the same for a band insulator as the ladder size 𝐿 

increases, as will be evident in Chapter 4.2. The ground state is non-degenerate, 

so the excitation gap 𝛥𝐸 coincides with the single-particle gap: 𝛥𝐸 = 𝐸p. 
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• In the limiting case 𝑉 → ∞ of an infinitely 

large repulsion, the fermions take the 

largest possible distance to each other. A 

Charge Density Wave with a twofold degenerate 

ground state is formed, as shown in Figure 

4.1. This results in the excitation energy 

𝛥𝐸 = 𝐸1 − 𝐸1 = 0 and the energy gap 𝐸p =

𝑉, as observed for the 1DSF chain and 2-leg ladder. 

The question now is whether there is another phase between the band isolator at 𝑉 = 0 

and the CDW phase at large 𝑉: 

• If THERE IS another phase, it is necessary to find out what that specific phase 

is and where its boundaries are to the band isolator and CDW phase. 

• If THERE IS NO other phase, it must be found out at which critical value 𝑉c 

the phase transition from the band insulator to the CDW phase happens. It must 

also be checked numerically whether the second phase is actually a CDW phase. 

This will be indicated in particular by the non-vanishing CDW order parameter. 

It would also be interesting to know whether the phase transition is first order 

(abrupt) or second order (continuous). 

The dimension 𝑚 of the left DMRG block is set to 100 and the number of sweeps to 

12. This choice of parameters provides good, consistent results, as will be evident in 

subsequent chapters. As with the 2-leg ladder, the number of sites is always even because 

of the structure of the 1221 ladder. 

4.1. ENTANGLEMENT ENTROPY 

Figure 4.2 shows the entropy 𝑆(𝑉) of a 1221 chain with/without CCS as a function of the 

interaction potential 𝑉. In contrast to the previously studied systems, the entropy of a 

finite 1221 chain with CCS shows a length-independent discontinuity near 𝑉 = 2. The 

1221 chain without CCS on the other hand shows a length-dependent maximum near 

𝑉 = 2. Linear extrapolation of the maximum position 𝑉c(1/𝐿) as a function of 1/𝐿 yields 

the critical value in the thermodynamic limit: 𝑉c(1/𝐿 = 0) ≈ 2.15 (without CCS) and  

𝑉c(1/𝐿 = 0) ≈ 2.05 (with CCS). See Figure 4.11 for demonstration. The entropy 𝑆(𝑉) 

Figure 4.1: Two degenerate states of a 

1221 ladder in the 𝑉 → ∞ limit. 
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therefore provides a first sign that a phase transition is taking place at the discontinuity 

point. 

Second sign is that the entropy 𝑆(𝑉) of a 1221 ladder as a function of 𝑉 shows the same 

behavior in the limit 𝑉 → ∞ as the entropy of a 2-leg ladder (Figure 3.2) - it goes 

exponentially to zero (inset of Figure 4.2). The entropy can be fitted with the same 

function (1.23) as the single-particle gap near the phase transition. But also the entropy 

𝑆(𝐿) as a function of 𝐿 of a 1DSF chain (Figure 2.1) and a 2-leg ladder (Figure 3.1) in the 

CDW phase move towards a constant entropy in the limit 𝐿 → ∞. This behavior of the 

entropy 𝑆(𝐿) is also observed for a 1221 ladder with CCS, as Figure 4.4 shows. Like the 

2-leg ladder, it can be fitted with the 4th degree polynomial function (3.1). 

The third sign indicating a phase transition is the behavior of the exponent |𝜅(𝑉)| as a 

function of 𝑉 from the Phase Independent Fit method. Figure 4.3 shows the exponent 

|𝜅(𝑉)| as a function of 𝑉 extracted from the finite-size scaling of the entropy (see inset 

of Figure 4.4): 

• For a 1221-ladder with CCS and 𝑉 ≤ 2.04 the exponent is zero up to the 5th 

decimal place. The exponent also vanishes for a ladder without CCS in this region. 

• At 𝑉 = 2.05 (ladder with CCS), a sharp peak occurs suggesting a phase transition 

in the thermodynamic limit near this point. For a ladder without CCS, the peak is 

broadened and shifted to 𝑉 = 2.21. 

• For 𝑉 > 2.05 (ladder with CCS) the exponent decreases rapidly to |𝜅(𝑉)| = 0. 

For a ladder without CCS, the decay to |𝜅(𝑉)| = 0 is slower, but neither 

exponential, power law nor polynomial of 4th order. 

Figure 4.2: Entropy 

𝑆(𝑉) of a 1221 ladder 
with/without CCS as a 
function of the 

interaction potential 𝑉 
shows either a length-
dependent discontinuity 
or an extremum. The 
inset shows the 
behavior of entropy for 

large 𝑉, which decays 
exponentially. 
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The insulating CDW phase of the 1DSF chain was characterized by |𝜅(𝑉)| = 0. In 

contrast, the conducting Luttinger Liquid phase was characterized by |𝜅(𝑉)| = 1. 

Therefore, it seems that a phase transition between two insulating phases occurs in the 1221 

chain because the exponent vanishes in both phases. 

These observations suggest that a phase transition from an insulating to an insulating phase 

occurs near 𝑉 ≈ 2. Whether this is in fact a phase transition to a CDW phase will become 

clear after the subsequent observables are analyzed. 

The following Table 4.1 summarizes the methods that, applied to entropy, reveal a 

possible phase transition in a 1221 ladder in the thermodynamic limit. According to the 

applied methods, the critical value lies somewhere in the region: 2.04 ≤ 𝑉c ≤ 2.22. 

Method CCS 𝑉c 

Linear Extrapolation of Extrema in 𝑆(𝑉) of a Finite System Yes ≈ 2.05 

Linear Extrapolation of Extrema in 𝑆(𝑉) of a Finite System No ≈ 2.15 

Phase Independent Fit Yes 2.05 ± 0.01 

Phase Independent Fit No 2.21 ± 0.01 

Table 4.1: Methods for determining the possible critical value in a 1221 ladder applied to entropy. How the 

error of 𝑉c is determined is described at the end of Chapter 2.1. 

 

Figure 4.3: The exponent 

|𝜅(𝑉)| from the Phase 
Independent Fit method 
for a 1221 ladder 
with/without CCS shows 

a maximum 𝑉c in the 

region 2.04 ≤ 𝑉c ≤ 2.22. 
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According to the Conformal Field Theory, the central charge 𝑐(𝑉) as a function of the 

interaction potential 𝑉 in the case of a 1DSF chain is a quantity which, depending on the 

value, characterizes a metallic phase (𝑐 = 1) or an insulating phase (𝑐 = 0) in the 

thermodynamic limit. It is possible to calculate the central charge 𝑐(𝑉) also for a 1221 

ladder. For this purpose, the entropy is calculated for two different numbers of sites 

(𝐿, 𝐿′) as described in Chapter 1.6.2 and then Eq. (1.14) is used. 

Figure 4.5 shows the central charge 𝑐(𝑉) as a function of 𝑉 for different, arbitrarily 

chosen, number of sites combinations (420, 402), (600, 402) and (1200, 600). As can 

be seen, the combination (420, 402) cannot be interpreted with the above explanation 

and this combination also does not exhibit any feature close to 𝑉 = 2, as was the case 

with entropy. However, this situation changes when the difference 𝐿′ − 𝐿 is increased: 

• For the combination (600, 402) of a 1221 ladder with CCS, a maximum occurs 

at 𝑉c = 2.07 ± 0.01. 

• For the combination (600, 402) of a 1221 ladder without CCS no maximum is 

seen, but it occurs at a larger difference - here at (1200,600). The maximum is 

at the position 𝑉c = 2.17 ± 0.01. 

Furthermore, independent of CCS symmetry, the central charge of a 1221 ladder indicates 

that with the larger difference 𝐿′ − 𝐿, the central charge converges to zero on both 

sides of the maximum. According to the Conformal Field Theory, it suggests a phase 

Figure 4.4: Entropy 𝑆(𝐿) 
of a 1221 ladder with 
CCS as a function of the 

number of sites 𝐿 
saturates rapidly at the 

entropy value 𝑆∞(𝑉) that 

is dependent on 𝑉. The 
same behavior is 
observed for a 1221 
ladder without CCS. The 
inset shows the power 
law fit of six black points 
representing the largest 
lengths. These fits are 
used for the Phase 
Independent Fit method. 
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transition near V ≈ 2 from one insulating phase to another insulating phase in the 

thermodynamic limit. 

In addition, the central charge confirms the predictions about the position of the critical 

value done by the entropy. However, since central charge is closely related to entropy via 

Eq. (1.14), it is not surprising that they show similar results. It is also worth noting that 

the central charge shows a local minimum near 𝑉 ≈ 1 that has also occurred in the 

entropy. Whether this is a special point in the thermodynamic limit or just a finite-size 

effect will become clear in the following chapters. 

4.2. EXCITATION GAP 

The excitation gap 𝛥𝐸(𝑉) of a 1DSF chain without CCS as a function of 𝑉 has shown a 

length-dependent maximum that shifted toward the theoretical phase transition 𝑉cdw = 2 as 

the chain length increased (see Chapter 2.3). The excitation gap 𝛥𝐸(𝑉) of a 1221 ladder 

with/without CCS also has a maximum 𝑉max ≈ 0.2, which, however, is independent of length, 

as shown in Figure 4.6. This maximum did not occur in either the entropy or the central 

charge of the 1221 ladder and is therefore assumed to be a finite-size effect. The 

maximum near 𝑉 = 2 is much more interesting, because it also occurred in the study of 

entropy and central charge. 

The excitation gap of the 1221 ladder with and without CCS differ slightly in the region 1 <

𝑉 < 2.5, which is why the maximum near 𝑉 = 2 is also different (see Figure 4.6): 

Figure 4.5: Central 

charge 𝑐(𝑉) of a 1221 
ladder as a function of 
the interaction 
potential for different 
number of sites 

combinations (𝐿, 𝐿′) 
with/without CCS. 
An extremum occurs 

at Vc = 2.07 (with 

CCS) and at Vc = 2.17 
(without CCS). 
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• For the 1221 ladder with CCS, the excitation gap decreases to zero and has a 

discontinuity at the position 𝑉c ≈ 2.05 ± 0.05. The abruptness and the slight 

length dependence of the discontinuity can be seen more clearly when the 

excitation gap is plotted on a logarithmic scale (inset of Figure 4.6). 

• For the 1221 ladder without CCS, the excitation gap decreases continuously and 

is zero to the fourth decimal place starting at 𝑉 ≥ 2.55. 

Even though the excitation gap with CCS has a special point at 𝑉 = 2.05, however, it 

depends on the arbitrary choice with which accuracy the excitation gap is considered to 

be zero. Here it is considered as 𝛥𝐸 = 0, if it is less than |𝛥𝐸| < 10−3. The vanishing of 

the excitation gap starting at 𝑉 = 2.05 provides a first hint for the degeneracy of the 

ground state and thus a necessary condition for the CDW phase. 

One way, free from arbitrariness, to quantitatively determine this special point near 𝑉 =

2 is the Phase Independent Fit method. As Figure 4.7 shows, the associated exponent 

|𝜅| has a maximum at 𝑉c = 2.07 ± 0.01 for the ladder with CCS. Investigation of the 

energy gap 𝛥𝐸 of the ladder with CCS confirms the predictions of the previous 

observables that a phase transition must be somewhere between 2 ≤ 𝑉c ≤ 2.1.  

In contrast, the |𝜅| exponent of a 1221 ladder without CCS has no maximum, but become 

non-zero at 𝑉 ≈ 2 and goes monotonically toward |𝜅| → 2 for 𝑉 → ∞. The same 

behavior of the exponent was observed for the single-particle gap of the 1DSF chain 

without CCS (see Figure 2.17). It seems that the exponent |𝜅| = 2 is equivalent to |𝜅| = 0. 

Whether this conjecture is true needs to be investigated in another work. 

Figure 4.6: Excitation 

gap 𝛥𝐸(𝑉) of a 1221 
ladder as a function of 

𝑉. The ladder with 
CCS has an excitation 
gap with a 

discontinuity at 𝑉 =
2.05. The ladder 
without CCS, on the 
other hand, decreases 
continuously to zero. 
The inset is a 
logarithmic scaling of 
the critical region. 
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Moreover, the Phase Independent Fit method applied to the excitation gap 𝛥𝐸 of a 1221-

ladder with CCS implies two things:  

1. The maximum at 𝑉max = 0.2 that occurred in the excitation gap 𝛥𝐸(𝑉) as a 

function of 𝑉 is in fact only a finite-size effect and will not (if true) occur in the 

thermodynamic limit of the 1221 ladder. 

2. On the left and on the right of the maximum (with a small distance to it), the 

exponent is |𝜅| = 0, which indicates a phase transition between two isolating 

phases. 

It is surprising that all three observables of a 1221 ladder with CCS investigated so far 

provide an indication of a phase transition near 𝑉 = 2. The Phase Independent Fit 

method stands out especially with its unambiguous predictions. 

4.3. SINGLE-PARTICLE GAP 

The single-particle gap 𝐸p(𝑉) of a 1DSF chain and a 2-leg ladder is linear in the CDW 

phase for large 𝑉 (see Figure 2.13 and Figure 3.5). This behavior is also observed for the 

single-particle gap 𝐸p(𝑉) of a 1221 ladder with/without CCS, as Figure 4.8 shows. Note, 

however, that linearity is not a sufficient condition for the CDW phase to occur. However, 

in combination with the vanishing excitation gap 𝛥𝐸, they imply a degeneracy of the 

ground state, which also occurs in the CDW phase. Furthermore, it can be seen that the 

1221 ladder with CCS shows a minimum at 𝑉c = 2.05 and provides further evidence that 

a phase transition occurs close to this point. 

Figure 4.7: The 

exponent |𝜅(𝑉)| from 
the Phase Independent 
Fit method for a 1221 
ladder with CCS using 
excitation gap shows a 

maximum 𝑉c = 2.07 
and a ladder without 
CCS has no maximum, 
but saturates at 

|𝜅(𝑉)| = 2. Dashed 
line is for eye-guidance. 
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For 𝑉 ≤ 2, the gap differs from that of a 1DSF chain. While the single-particle gap of the 

1DSF chain vanishes in the metallic phase (𝑉 ≤ 2), the length-independent single-

particle gap of the 1221 ladder with CCS is non-zero in this region. It first increases linearly, 

saturates and drops again to a minimum, and then increases linearly again. The length-

independent gap of the 1221 ladder without CCS differs in that it does not produce a 

pronounced minimum. It only becomes visible at 𝑉c = 2.22 after zooming in. However, 

both ladders (with/without CCS) have two things in common: 

1. As described and expected in the introduction of Chapter 4, the single-particle 

gap 𝐸p of a non-interacting 1221 ladder (𝑉 = 0) coincides with the excitation gap 

𝛥𝐸. This confirms that the non-interacting 1221 ladder is a band insulator 

regardless of the CCS symmetry.  

2. For 0 < 𝑉 < 𝑉c, excitation gap 𝛥𝐸 does not coincide with the single-particle gap 

𝐸p. So the ladder can not be a band insulator in this region. Moreover, the length-

independent excitation gap does not vanish in the region 0 < 𝑉 < 𝑉c, so the ground 

state is non-degenerate and the ladder is not in a CDW phase. In this region, of 

course, the ladder is also non-conductive because the energy gap is not zero. In 

the range 0 < 𝑉 < 𝑉c, the ladder seems to be a correlated band insulator. The 

lowest excitation here cannot be determined from the single-particle gap or 

excitation gap. It could be a bound particle-hole pair (exciton) with binding 

energy 𝐸p − 𝛥𝐸 or a collective excitation where the Charge Density Wave is 

not a ground state but the lowest excited state.16–18 In order to find out exactly 

what kind of excitation we are dealing with here, further observables have to be 

Figure 4.8: The single-

particle gap 𝐸p(𝑉) as a 

function of 𝑉 for a 1221 
ladder with/without CCS. 
There is an extremum at the 

point 𝑉c = 2.05 for the 
ladder with CCS and at 

𝑉c = 2.22 without CCS. 

For 𝑉 > 2.5, the energy 

gap is linear. 𝐸p and 

excitation gap 𝛥𝐸 coincide 

only at 𝑉 = 0. 
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calculated, such as dynamic correlation function. This region of the interaction 

potential of the 1221 ladder can be investigated in more detail in a further work. 

Finite-size scaling 𝐸p(1/𝐿) of the single-particle gap as a function of 1/𝐿 yields the 

exponent |𝜅| using the Phase Independent Fit method. This exponent is plotted in Figure 

4.9 as a function of 𝑉 and shows a sharp peak at 𝑉c = 2.04 for a 1221 ladder with CCS 

and is otherwise zero in both phases as in the case of the previously investigated 

observables. The ladder without CCS has a maximum at 𝑉c = 2.12 and drops to zero much 

more slowly (but neither exponential nor like a power law) after the phase transition. Only 

starting at 𝑉 ≈ 4 the exponent becomes |𝜅| < 10−3. 

Table 4.2 summarizes the determined critical values obtained using the single-particle gap. 

They agree well with the previously determined critical values. 

Method CCS 𝑉c 

Extremum in 𝐸p of a Finite System Yes 2.05 ± 0.05 

Extremum in 𝐸p of a Finite System No 2.22 ± 0.05 

Phase Independent Fit Yes 2.04 ± 0.005 

Phase Independent Fit No 2.12 ± 0.05 

Table 4.2: Methods for determining the possible critical value in a 1221 chain applied to single-particle gap. 

4.4. CDW ORDER PARAMETER 

The CDW order parameter |𝛿(𝑉)| is THE observable par excellence with which the 

CDW phase can be detected. This is because only in the CDW phase, the order parameter 

Figure 4.9: The exponent 

|𝜅(𝑉)| from the Phase 
Independent Fit method 
for a 1221 ladder with CCS 
using single-particle gap 

shows a maximum 𝑉c =
2.04 and the ladder without 
CCS has a maximum at 

𝑉c = 2.12. Dashed line is 
for eye-guidance. 
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is nonzero and theoretically approaches |𝛿(𝑉)| = 0.5 for 𝑉 → ∞. This behavior has been 

observed even in a finite 1DSF chain (see Figure 2.18) and in a finite 2-leg ladder (see Figure 

3.6). The inset of Figure 4.10 confirms this behavior for 𝑉 → ∞ also for a finite 1221 

ladder. From the length independence of the order parameter |𝛿(𝑉)| for large 𝑉, it can also 

be concluded that also in the thermodynamic limit the order parameter of the 1221 ladder 

converge to |𝛿(𝑉)| = 0.5 with an accuracy of 0.09%. The 1221 ladder can be fitted with 

a 2nd degree polynomial (1.18) starting at 𝑉 > 4. Thus, the 1221 ladder shows the same 

behavior as the theoretical behavior of a 1DSF chain for large interaction potentials.3 

 

Furthermore, the order parameter |𝛿(𝑉)| of the 1221 ladder shows the following 

behavior as a function of 𝑉: 

• With CCS there is a length dependent (within the given accuracy: a discontinuous) jump 

from zero to a finite value. The first jump in the value of |𝛿(𝑉)| (coming from 

small 𝑉) is extrapolated as follows: The interaction potential 𝑉c(1/𝐿) at which this 

jump happens is plotted as a function of 1/L and extrapolated linearly to 1/𝐿 = 0. 

The extrapolated critical value for a ladder in the thermodynamic limit is 𝑉c(0) ≈

2.01 (see Figure 4.11). 

• Without CCS, the order parameter |𝛿(𝑉)| vanishes for all ladder sizes up to 𝐿 =

2400 in the region 𝑉 ≤ 4. This indicates that the order parameter of a 1221 ladder 

without CCS is not a good parameter for the predictions in the thermodynamic 

limit. 

Figure 4.10: Magnitude 

|𝛿(𝑉)| of the order 
parameter of a 1221 
ladder with CCS shows 
a length dependent 

discontinuity near 𝑉 =
2. The ladder without 
CCS is zero 
everywhere. The inset 
shows the order 

parameter for large 𝑉. 
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Unfortunately, the Phase Independent Fit method does not work here in the vicinity of 

the 𝑉 ≈ 2 phase transition because of the limited accuracy and very steep slope. 

Nevertheless, the CDW order parameter (with CCS) also yields a critical value 𝑉c ≈

2.01, which agrees well with the results of previously studied observables. Moreover, the 

order parameter confirms the transition to a CDW phase. 

The study of the CDW order parameter (with CCS) has confirmed that a phase transition 

happens near 𝑉 = 2 to the CDW phase. However, the order parameter in Figure 4.10 

also shows that the size of the discontinuity at 𝑉c(𝐿) decreases with a larger number 𝐿 

of sites. The investigation of this size of discontinuity as a function of 𝐿 is, however, 

difficult, as for example 𝐿 = 2400 case shows. For this, the discontinuity is resolved more 

precisely and as can be seen, the size of the discontinuity becomes smaller as the resolution 

becomes larger. This implies a second order phase transition. However, it cannot be 

excluded that the magnitude of the discontinuity is very small. 

4.5. DENSITY FLUCTUATION 

The density fluctuation 𝜎2(𝑉) as a function of 𝑉 is another way to detect a CDW phase. 

In the CDW phase, 𝜎2(𝑉) → 0.25 goes for 𝑉 → ∞. This behavior has been observed in 

a finite 1DSF chain (see Figure 2.20) and in a finite 2-leg ladder (see Figure 3.7). This 

behavior can also be confirmed for a 1221 ladder with/without CCS for 𝑉 → ∞. The 

density fluctuation 𝜎2(𝑉) for 𝑉 > 4 can be fitted with the 2nd degree polynomial (1.18) 

as in the case of the 1DSF chain and the 2-leg ladder. The obtained limit value differs 

only by 0.07% from the theoretical limit 𝜎2(𝑉 → ∞) = 0.25. 

Figure 4.11: Position 

𝑉c(1/𝐿 ) of the jump in 
the order parameter 

|𝛿(𝑉)| as a function of 
the inverse ladder size 

1/𝐿 is extrapolated 
linearly. The critical 

value for 1/𝐿 = 0 is 

𝑉c ≈ 2.01. 
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As Figure 4.12 shows, density fluctuation 𝜎2(𝑉) of a 1221-ladder with CCS as a function 

of V has a length-dependent discontinuity that converges to the value 𝑉c ≈ 2.01 for 

1/𝐿 → ∞ by using linear extrapolation (done in the same way as in Figure 4.11). The 

density fluctuation 𝜎2(𝑉) of a 1221 ladder without CCS, on the other hand, is continuous 

in the critical region and therefore cannot be used directly to determine the critical value. 

In contrast to the CDW order parameter, densitiy fluctuation is non-zero for 𝑉 > 𝑉c and 

indicates that in the thermodynamic limit the 1221 ladder without CCS is also in the CDW 

phase for 𝑉 > 𝑉c. 

4.6. DENSITY-DENSITY CORRELATION 

FUNCTION 

Let's give the density-density correlation function |𝐹(𝑥)| one last chance (if you 

haven't read the previous chapters: The correlation function is the observable that gave 

me the most headaches). Figure 4.13 shows |𝐹(𝑥)| of a 1221 ladder of size 𝐿 = 600 

with/without CCS with reference point 𝑥0 = 1. It is shown on a logarithmic scale and 

exhibits the following behavior: 

• For a 1221 ladder with CCS, the correlation function decays rapidly exponentially 

with a small distance to the boundary site 𝑥0. This behavior is typical for a band 

insulator.16 However, the exponential decay is also observed in the previously 

determined CDW phase starting at 𝑉 ≳ 2. This contradicts the previous results. 

The correlation function near the phase transition at 𝑉 ≈ 2 is also interesting. 

Figure 4.12: Density 

fluctuation 𝜎2 of a 
1221 ladder with CCS 
shows a length 
dependent 
discontinuity. The 
order parameter of 
the ladder without 
CCS, on the other 
hand, is continuous. 
Both order 
parameters converge 

toward 𝜎2 = 0.25 for 

𝑉 → ∞. 
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Here |𝐹(𝑥)| also decreases exponentially (with a sufficient distance to the 

boundary site), but much slower. 

• A 1221 ladder without CCS (inset of Figure 4.13) shows something different. In 

the postulated CDW phase 𝑉 ≳ 2, the correlation function decays exponentially 

only near the boundary site 𝑥0 and saturates at a small value |𝐹(𝑥)| of order 

10−5. However, the value is so small that the interpretation of the results is not 

really meaningful. If this saturation can be taken seriously, then the correlation 

function of a ladder without CCS with its different behavior for 𝑉 ≳ 2 and 𝑉 <

2 confirms that the ladder may have two different phases with a phase transition 

at 𝑉 ≈ 2. 

4.7. SUMMARY 

In contrast to the 1DSF chain and 2-leg ladder, all observables (except correlation 

function) of a 1221 ladder have revealed a phase transition near 𝑉 = 2. For a ladder with 

CCS, the entropy 𝑆 and central charge 𝑐 even revealed the phase transition in the form of 

a (numerical) discontinuity! 

The excitation gap 𝛥𝐸 and single-particle gap 𝐸p confirmed that for 𝑉 = 0 the 1221 

ladder is a band insulator. For 0 < 𝑉 < 𝑉c, the excitation gap and single-particle gap were 

not identical and excitation gap was not zero.  This could be an indication of a new 

insulating phase that is neither band insulator nor CDW phase. 𝛥𝐸 and 𝐸p also provided 

evidence that starting at the critical value 𝑉c ≤ 𝑉 the CDW phase begins, because here 

Figure 4.13: Correlation 

function |𝐹(𝑥)| of a 
1221 ladder with CCS of 

the size 𝐿 = 600. The 

inset shows |𝐹(𝑥)| of a 
ladder without CCS. 



Chapter: Results for an alternating 1221-ladder   77 

𝛥𝐸 = 0 and 𝐸p is proportional to 𝑉, as it is in the CDW phase of the 1DSF chain and 

the 2-leg ladder. 

CDW order parameter 𝛿 and density fluctuation 𝜎2 (at least for a ladder with CCS) clearly 

demonstrated that a phase transition to the CDW phase happens at 𝑉c and persists 

for all investigated 𝑉 ≥ 𝑉c. 

Moreover, it has been shown that a 1221-ladder with CCS symmetry is better for 

studying phase transitions in the thermodynamic limit because 6 out of 7 observables 

(except correlation function) have shown a discontinuity or extremum at the phase 

transition at 𝑉c = 2.04 ± 0.07. Here 𝑉c is the mean with standard deviation of all 

determined critical values 𝑉c from Table 4.3. 

Observable Method 𝑉c 

𝑆 Linear Fit of Extrema in a Finite System ≈ 2.05 

𝑆 Phase Independent Fit 2.05 ± 0.01 

𝑐 Extremum in a Finite System 2.07 ± 0.01 

𝛥𝐸 Discontinuity in a Finite System 2.05 ± 0.05 

𝛥𝐸 Phase Independent Fit 2.07 ± 0.01 

𝐸p Extremum in a Finite System 2.05 ± 0.01 

𝐸p Phase Independent Fit 2.04 ± 0.01 

𝛿 Linear Extrapolation of Discontinuity in a Finite System ≈ 2.01 

𝜎2 Linear Extrapolation of Discontinuity in a Finite System ≈ 2.01 

Table 4.3: All observables of a 1221 ladder with CCS and the applied methods that revealed a phase 

transition near 𝑉 = 2. 

The ladder without CCS worked only for 3 of 7 studied observables. These are listed in 

Table 4.4. The mean of the critical value 𝑉c = 2.17 ± 0.09 is slightly higher than the mean 

obtained for the 1221 ladder with CCS symmetry. The latter should be clearly preferred, 

going by the number of successful observables and methods. 

Observable Method 𝑉c 

𝑆 Linear Fit of Extrema in a Finite System ≈ 2.15 

𝑆 Phase Independent Fit 2.21 ± 0.01 

𝑐 Extremum in a Finite System 2.17 ± 0.01 

𝐸p Extremum in a Finite System 2.22 ± 0.05 
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Observable Method 𝑉c 

𝐸p Phase Independent Fit 2.12 ± 0.05 

Table 4.4: All observables of a 1221 ladder without CCS and the applied methods that revealed a phase 

transition near 𝑉 = 2.
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Conclusion 

In this work, quantum phases and the transition between phases in three spinless 

fermionic systems were studied using Density Matrix Renormalization Group algorithm. 

The 1DSF chain and 2-leg ladder with theoretically known exact Charge Density Wave 

phase transitions at 𝑉cdw = 2 (1DSF) and 𝑉cdw = 0 (2-leg) served as toy models on which 

various numerical methods for determining these critical values were tested. They were 

then applied to a less known system, the 1221 ladder. The study of these systems has 

revealed 5 important points: 

1. Some observables 𝑂(𝑉) as a function of the interaction potential 𝑉 directly exhibit 

an extremum that is close to the exact phase transition.  

2. Some observables, on the other hand, can only be used indirectly to determine the 

critical value by applying a suitable method. From the entropy 𝑆(𝑉) of a 1DSF 

chain as a function of 𝑉, for example, a phase transition cannot be obtained 

directly, but by using the Phase Independent Fit method in combination with the 

power law, the phase transition in the thermodynamic limit can be revealed very 

accurately. 

3. In most cases it is not necessary to choose a large dimension 𝑚 > 100 of the 

Hilbert space of the left block for DMRG to investigate phase transitions 

quantitatively (at least for the 1DSF chain and 1221 ladder). This saves computing 

power and time. However, one still has to be careful because by choosing too 

small 𝑚 one can reach a different ground state in Hilbert space. 

4. Systems with Charge Conjugation Symmetry described by Hamiltonian (1.9) work 

better in determining the phase transitions. There were more observables and 

methods that worked. 

5. The Phase Independent Fit method in combination with the power law provided 

an accurate critical value for both the 1DSF chain and the 1221 ladder. It was the 

only method that could be used across systems and observables. 
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Surprisingly, in the case of the at least theoretically known system, the 1221 ladder, most 

of the observables and methods worked! Thus, it was possible to detect a phase 

transition at 𝑉c = 2.04 ± 0.07 from an insulating phase to the insulating CDW phase. 

However, what remains unclear is what phase is in the region between the band insulator 

(𝑉 = 0) and CDW phase (𝑉 = 𝑉c). Some guesses were made in Chapter 4.3. However, 

the problem must be investigated in more detail. 

The author ventures another guess concerning the determined critical point 𝑉c: Is nature 

really so brutal and would choose a phase transition of a half-filled infinite 1221 ladder at 

such an ugly value as 2.04? The author assumes that the phase transition value 𝑉cdw =

2 of the 1DSF chain does not change upon transformation to a 1221 ladder. This 

assumption could be checked by a clever theorist. 

During the course of this work, 5 additional problems arose that were not resolved and 

should be investigated in more detail in future work: 

1. There seems to be a relationship between the theoretical central charge 𝑐 of the 

1DSF model and the exponent |𝜅| from the Phase Independent Fit method. Both 

are |𝜅| = 𝑐 = 0 in an insulating phase and both |𝜅| = 𝑐 = 1 in a metallic phase. 

Are these quantities related? 

2. Which insulating phase of the 1221 ladder is located in the region between the 

band insulator (𝑉 = 0) and CDW phase (𝑉 = 𝑉c)? 

3. Where is the exact theoretical phase transition 𝑉cdw in the thermodynamic limit 

for the 1221 ladder? 

4. The Phase Independent Fit method has worked system-wide and successfully 

revealed phase transitions in the thermodynamic limit. To which other quantum 

systems with known and unknown phase transitions can the method be 

successfully applied? 

5. How can the author get rid of his headache caused by the density-density 

correlation function |𝐹(𝑥)|? 
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